Search results for: environment knowledge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14841

Search results for: environment knowledge

201 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 375
200 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 40
199 Establishing Feedback Partnerships in Higher Education: A Discussion of Conceptual Framework and Implementation Strategies

Authors: Jessica To

Abstract:

Feedback is one of the powerful levers for enhancing students’ performance. However, some students are under-engaged with feedback because they lack responsibility for feedback uptake. To resolve this conundrum, recent literature proposes feedback partnerships in which students and teachers share the power and responsibilities to co-construct feedback. During feedback co-construction, students express feedback needs to teachers, and teachers respond to individuals’ needs in return. Though this approach can increase students’ feedback ownership, its application is lagging as the field lacks conceptual clarity and implementation guide. This presentation aims to discuss the conceptual framework of feedback partnerships and feedback co-construction strategies. It identifies the components of feedback partnerships and strategies which could facilitate feedback co-construction. A systematic literature review was conducted to answer the questions. The literature search was performed using ERIC, PsycINFO, and Google Scholar with the keywords “assessment partnership”, “student as partner,” and “feedback engagement”. No time limit was set for the search. The inclusion criteria encompassed (i) student-teacher partnerships in feedback, (ii) feedback engagement in higher education, (iii) peer-reviewed publications, and (iv) English as the language of publication. Those without addressing conceptual understanding and implementation strategies were excluded. Finally, 65 publications were identified and analysed using thematic analysis. For the procedure, the texts relating to the questions were first extracted. Then, codes were assigned to summarise the ideas of the texts. Upon subsuming similar codes into themes, four themes emerged: students’ responsibilities, teachers’ responsibilities, conditions for partnerships development, and strategies. Their interrelationships were examined iteratively for framework development. Establishing feedback partnerships required different responsibilities of students and teachers during feedback co-construction. Students needed to self-evaluate performance against task criteria, identify inadequacies and communicate their needs to teachers. During feedback exchanges, they interpreted teachers’ comments, generated self-feedback through reflection, and co-developed improvement plans with teachers. Teachers had to increase students’ understanding of criteria and evaluation skills and create opportunities for students’ expression of feedback needs. In feedback dialogue, teachers responded to students’ needs and advised on the improvement plans. Feedback partnerships would be best grounded in an environment with trust and psychological safety. Four strategies could facilitate feedback co-construction. First, students’ understanding of task criteria could be increased by rubrics explanation and exemplar analysis. Second, students could sharpen evaluation skills if they participated in peer review and received teacher feedback on the quality of peer feedback. Third, provision of self-evaluation checklists and prompts and teacher modeling of self-assessment process could aid students in articulating feedback needs. Fourth, the trust could be fostered when teachers explained the benefits of feedback co-construction, showed empathy, and provided personalised comments in dialogue. Some strategies were applied in interactive cover sheets in which students performed self-evaluation and made feedback requests on a cover sheet during assignment submission, followed by teachers’ response to individuals’ requests. The significance of this presentation lies in unpacking the conceptual framework of feedback partnerships and outlining feedback co-construction strategies. With a solid foundation in theory and practice, researchers and teachers could better enhance students’ engagement with feedback.

Keywords: conceptual framework, feedback co-construction, feedback partnerships, implementation strategies

Procedia PDF Downloads 58
198 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 225
197 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers

Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala

Abstract:

The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.

Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification

Procedia PDF Downloads 137
196 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 137
195 A Mainstream Aesthetic for African American Female Filmmakers

Authors: Tracy L. F. Worley

Abstract:

This presentation explores the environment that has limited leadership opportunities for Black women in cinema and advocates for autonomy among Black women filmmakers that is facilitated by strong internal and external networks and cooperative opportunities. Early images of African Americans in motion pictures were often conceptualized from the viewpoint of a White male director and depicted by White actors. The black film evolved in opposition to this context, leading to a Black film aesthetic. The oppositional context created in response to racist, misogynistic, and sexist representations in motion pictures sets the tone for female filmmakers of every hue – but especially for African American women. For them, the context of a male gaze, and for all intents and purposes, a White male gaze, forces them to create their own aesthetic. Theoretically, men and women, filmmakers and spectators have different perspectives across race, ethnicity, and gender. Two feminist theorists, bell hooks and Mary Ann Doane, suggest that female filmmakers are perceived as disparate from male filmmakers and that women, in general, are defined by what men see. Mary Ann Doane, a White feminist film theorist, has focused extensively on female spectatorship and women (White) in general as the object of the male gaze. Her discussion of the female body, male perception of it, and feminism in the motion picture industry support the suggestion that comprehending the organization and composition of Hollywood is critical to understanding women’s roles in the industry. Although much of her research addresses the silent film era and women’s roles then, Doane suggests that across cinematic periods, the theory assigned to “cinematic apparatus” is formulated within a context of sexuality. Men and women are viewed and treated differently in cinema (in front of and behind the camera), with women’s attractiveness and allure photographed specifically for the benefit of the “spectatorial desire” of the male gaze. Bell Hooks, an African American feminist writer and theorist with more than 30 published books and articles on race, gender, class, and culture in feminism and education, suggests that women can overcome the male gaze by using their “oppositional gaze” to transform reality and establish their own truth. She addresses gender within the context of race by acknowledging the realities faced by African American women and the fact that the feminist movement was never intended to include Black women. A grounded theory study led to the development of a leadership theory that explains why African American women are disproportionately represented in a mainstream motion picture leadership. The study helped to reveal the barriers to entry and illuminated potential strategies that African American female motion picture directors might pursue to reduce this inequity. Using semi-structured interviews as the primary means for data collection, the lived experiences of African American female directors and organizational leadership’s perceived role in the perpetuation of negative female imagery in major motion pictures led to the identification of support strategies for African American female motion picture directors that counter social stereotyping and validate the need for social networking in the mainstream.

Keywords: African American, cinema, directors, filmmaking, leadership, women

Procedia PDF Downloads 43
194 The Practices Perspective in Communication, Consumer and Cultural Studies: A Post-Heideggerian Narrative

Authors: Tony Wilson

Abstract:

This paper sets out a practices perspective or practices theory, which has become pervasive from business to sociological studies. In doing so, it locates the perspective historically (in the work of the philosopher Heidegger) and provides a contemporary illustration of its application to communication, consumer and cultural studies as central to this conference theme. The structured account of practices (as articulated in eight ‘axioms’) presented towards the conclusion of this paper is an initial statement - planned to encourage further detailed qualitative and systematic research in areas of interest to the conference. Practice theories of equipped and situated construction of participatory meaning (as in media and marketing consuming) are frequently characterized as lacking common ground, or core principles. This paper explores whether by retracing a journey to earlier philosophical underwriting, a shared territory promoting new research can be located as current philosophical hermeneutics. Moreover, through returning to hermeneutic first principles, the paper shows that a series of spatio-temporal metaphors become available - appropriate to analyzing communication as a process across disciplines in which it is considered. Thus one can argue, for instance, that media users engage (enter) digital text from their diverse ‘horizons of expectation’, in a productive enlarging ‘fusion’ of horizons of understanding, thereby ‘projecting’ a new narrative, integrated in a ‘hermeneutic circle’ of meaning. A politics of communication studies may contest a horizon of understanding - so engaging in critical ‘distancing’. Marketing’s consumers can occupy particular places on a horizon of understanding. Media users pass over borders of changing, revised perspectives. Practices research can now not only be discerned in multiple disciplines but equally crosses disciplines. The ubiquitous practice of media use by managers and visitors in a shopping mall - the mediatization of malls - responds to investigating not just with media study expertise, but from an interpretive marketing perspective. How have mediated identities of person or place been changed? Emphasizing understanding of entities in a material environment as ‘equipment’, practices theory enables the quantitative correlation of use and demographic variable as ‘Zeug Score’. Human behavior is fundamentally habitual - shaped by its tacit assumptions - occasionally interrupted by reflection. Practices theory acknowledges such action to be minimally monitored yet nonetheless considers it as constructing narrative. Thus presented in research, ‘storied’ behavior can then be seen to be (in)formed and shaped from a shifting hierarchy of ‘horizons’ or of perspectives - from habituated to reflective - rather than a single seamless narrative. Taking a communication practices perspective here avoids conflating tacit, transformative and theoretical understanding in research. In short, a historically grounded and unifying statement of contemporary practices theory will enhance its potential as a tool in communication, consumer and cultural research, landscaping interpretative horizons of human behaviour through exploring widely the culturally (in)formed narratives equipping and incorporated (reflectively, unreflectively) in people’s everyday lives.

Keywords: communication, consumer, cultural practices, hermeneutics

Procedia PDF Downloads 239
193 Promoting Resilience in Adolescents: Integrating Adolescent Medicine and Child Psychology Perspectives

Authors: Xu Qian

Abstract:

This abstract examines the concept of resilience in adolescents from both adolescent medicine and child psychology perspectives. It discusses the role of healthcare providers in fostering resilience among adolescents, encompassing physical, psychological, and social aspects. The paper highlights evidence-based interventions and practical strategies for promoting resilience in this population. Introduction: Resilience plays a crucial role in the healthy development of adolescents, enabling them to navigate through the challenges of this transitional period. This abstract explores the concept of resilience from the perspectives of adolescent medicine and child psychology, shedding light on the collective efforts of healthcare providers in fostering resilience. By integrating the principles and practices of these two disciplines, this abstract emphasizes the multidimensional nature of resilience and its significance in the overall well-being of adolescents. Methods: A comprehensive literature review was conducted, encompassing research articles, empirical studies, and expert opinions from both adolescent medicine and child psychology fields. The search included databases such as PubMed, PsycINFO, and Google Scholar, focusing on publications from the past decade. The review aimed to identify evidence-based interventions and practical strategies employed by healthcare providers to promote resilience among adolescents. Results: The review revealed several key findings regarding the promotion of resilience in adolescents. Firstly, resilience is a dynamic process influenced by individual characteristics, environmental factors, and the interaction between the two. Secondly, healthcare providers play a critical role in fostering resilience by addressing the physical, psychological, and social needs of adolescents. This entails comprehensive healthcare services that integrate medical care, mental health support, and social interventions. Thirdly, evidence-based interventions such as cognitive-behavioral therapy, social skills training, and positive youth development programs have shown promising outcomes in enhancing resilience. Discussion: The integration of adolescent medicine and child psychology perspectives provides a comprehensive framework for promoting resilience in adolescents. By acknowledging the interplay between physical health, psychological well-being, and social functioning, healthcare providers can tailor interventions to address the specific needs and challenges faced by adolescents. Collaborative efforts between medical professionals, psychologists, educators, and families are vital in creating a supportive environment that fosters resilience. Additionally, the findings highlight the importance of early identification and intervention, emphasizing the need for routine screening and assessment to identify adolescents at risk and provide timely support. Conclusion: Promoting resilience in adolescents requires a holistic approach that integrates adolescent medicine and child psychology perspectives. By recognizing the multifaceted nature of resilience, healthcare providers can implement evidence-based interventions and practical strategies to enhance the well-being of adolescents. The collaboration between healthcare professionals from different disciplines, alongside the involvement of families and communities, is crucial for creating a resilient support system. By investing in the promotion of resilience during adolescence, we can empower young individuals to overcome adversity and thrive in their journey toward adulthood.

Keywords: psychology, clinical psychology, child psychology, adolescent psychology, adolescent

Procedia PDF Downloads 52
192 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications

Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino

Abstract:

The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.

Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses

Procedia PDF Downloads 166
191 Explosive Clad Metals for Geothermal Energy Recovery

Authors: Heather Mroz

Abstract:

Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.

Keywords: clad metal, explosion welding, separator material, well casing material, piping material

Procedia PDF Downloads 138
190 A Wasp Parasitoids of Genus Cotesia (Hymenoptera: Braconidae) Naturally Parasitizing Pectinophora gossypiella (Saunders) on Transgenic Cotton in Indian Punjab

Authors: Vijay Kumar, G. K. Grewal, Prasad S. Burange

Abstract:

India is one of the largest cultivators of cotton in the world. Among the various constraints, insect pests are posing a major hurdle to the success of cotton cultivation. Various bollworms, including the pink bollworm, Pectinophora gossypiella (Saunders), cause serious losses in India, China, Pakistan, Egypt, Brazil, tropical America, and Africa, etc. Bt cotton cultivars having Cry genes were introduced in India in 2002 (Cry1Ac) and 2006 (Cry1Ac+ Cry2Ab) for control of American, spotted, and pink bollworms. Pink bollworm (PBW) larvae infest flowers, squares, and bolls. Larva burrows into flowers and bolls to feed on pollen and seeds, respectively. It has a shorter lifecycle and more generations per year, so it develops resistance more quickly than other bollworms. Further, it has cryptic feeding sites, i.e., flowers and bolls/seeds, so it is not exposed to harsh environmental fluctuations and insecticidal applications. The cry toxin concentration is low in its feeding sites, i.e., seeds and flowers of cotton. The use of insecticide and Bt cotton is the primary control measure that has been successful in limiting the damage of PBW. But with the passage of time, it has developed resistance against insecticides and Bt cotton. However, the use of insecticides increases chemical control costs while causing secondary pest problems and environmental pollution. Extensive research has indicated that monitoring and control measures such as biological, cultural, chemical, and host plant resistance methods can be integrated for effective PBW management. The potential of various biological control organisms needs to be explored. The impact of transgenic cotton on non-target organisms, particularly natural enemies, which play an important role in pest control, is still being debated. According to some authors, Bt crops have a negative impact on natural enemies, particularly parasitoids. An experiment was carried out in the Integrated Pest Management Laboratory of the Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India, to study the natural parasitization of PBW on Bt cotton in 2022. A large population of larvae of PBW were kept individually in plastic containers and fed with cotton bolls until the emergence of a parasitoid cocoon. The first cocoon of the parasitoid was observed on October 25, 2022. Symptoms of parasitization were never seen on larvae. Larvae stopped feeding and became inactive before the emergence of parasitoids for pupation. Grub makes its way out of larvae by making a hole in the integument, and immediately after coming out, it spins the cocoon. The adult parasitoid emerged from the cocoon after eight days. The parasitoids that emerged from the cocoon were identified as Cotesia (Braconidae: Hymenoptera) based on the features of the adult. Out of 475 larvae of PBW, 87 were parasitized, with 18.31% of parasitization. Out of these, 6.73% were first instar, 10.52% were second instar, and 1.05% were third instar larvae of PBW. No parasitization was observed in fourth instar larvae. Parasitoids were observed during the fag end of cropping season and mostly on the earlier instars. It is concluded that the potential of Cotesia may be explored as a biological control agent against PBW, which is safer to human beings, environment and non-taraltoget organisms.

Keywords: biocontrol, Bt cotton, Cotesia, Pectinophora gossypiella

Procedia PDF Downloads 59
189 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 61
188 Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit

Authors: Imen Soltani, Takoua Soltani, Taoufik Aguili

Abstract:

Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control.

Keywords: graphene, method of moment combined with generalised equivalent circuit, reconfigurable metasurface, reflectarray, terahertz domain

Procedia PDF Downloads 152
187 (Anti)Depressant Effects of Non-Steroidal Antiinflammatory Drugs in Mice

Authors: Horia Păunescu

Abstract:

Purpose: The study aimed to assess the depressant or antidepressant effects of several Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in mice: the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam, and the non-selective COX-1 and COX-2 inhibitors lornoxicam, sodium metamizole, and ketorolac. The current literature data regarding such effects of these agents are scarce. Materials and methods: The study was carried out on NMRI mice weighing 20-35 g, kept in a standard laboratory environment. The study was approved by the Ethics Committee of the University of Medicine and Pharmacy „Carol Davila”, Bucharest. The study agents were injected intraperitoneally, 10 mL/kg body weight (bw) 1 hour before the assessment of the locomotor activity by cage testing (n=10 mice/ group) and 2 hours before the forced swimming tests (n=15). The study agents were dissolved in normal saline (meloxicam, sodium metamizole), ethanol 11.8% v/v in normal saline (ketorolac), or water (lornoxicam), respectively. Negative and positive control agents were also given (amitryptilline in the forced swimming test). The cage floor used in the locomotor activity assessment was divided into 20 equal 10 cm squares. The forced swimming test involved partial immersion of the mice in cylinders (15/9cm height/diameter) filled with water (10 cm depth at 28C), where they were left for 6 minutes. The cage endpoint used in the locomotor activity assessment was the number of treaded squares. Four endpoints were used in the forced swimming test (immobility latency for the entire 6 minutes, and immobility, swimming, and climbing scores for the final 4 minutes of the swimming session), recorded by an observer that was "blinded" to the experimental design. The statistical analysis used the Levene test for variance homogeneity, ANOVA and post-hoc analysis as appropriate, Tukey or Tamhane tests.Results: No statistically significant increase or decrease in the number of treaded squares was seen in the locomotor activity assessment of any mice group. In the forced swimming test, amitryptilline showed an antidepressant effect in each experiment, at the 10 mg/kg bw dosage. Sodium metamizole was depressant at 100 mg/kg bw (increased the immobility score, p=0.049, Tamhane test), but not in lower dosages as well (25 and 50 mg/kg bw). Ketorolac showed an antidepressant effect at the intermediate dosage of 5 mg/kg bw, but not so in the dosages of 2.5 and 10 mg/kg bw, respectively (increased the swimming score, p=0.012, Tamhane test). Meloxicam and lornoxicam did not alter the forced swimming endpoints at any dosage level. Discussion: 1) Certain NSAIDs caused changes in the forced swimming patterns without interfering with locomotion. 2) Sodium metamizole showed a depressant effect, whereas ketorolac proved antidepressant. Conclusion: NSAID-induced mood changes are not class effects of these agents and apparently are independent of the type of inhibited cyclooxygenase (COX-1 or COX-2). Disclosure: This paper was co-financed from the European Social Fund, through the Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU /159 /1.5 /S /138907 "Excellence in scientific interdisciplinary research, doctoral and postdoctoral, in the economic, social and medical fields -EXCELIS", coordinator The Bucharest University of Economic Studies.

Keywords: antidepressant, depressant, forced swim, NSAIDs

Procedia PDF Downloads 212
186 Development of PCL/Chitosan Core-Shell Electrospun Structures

Authors: Hilal T. Sasmazel, Seda Surucu

Abstract:

Skin tissue engineering is a promising field for the treatment of skin defects using scaffolds. This approach involves the use of living cells and biomaterials to restore, maintain, or regenerate tissues and organs in the body by providing; (i) larger surface area for cell attachment, (ii) proper porosity for cell colonization and cell to cell interaction, and (iii) 3-dimensionality at macroscopic scale. Recent studies on this area mainly focus on fabrication of scaffolds that can closely mimic the natural extracellular matrix (ECM) for creation of tissue specific niche-like environment at the subcellular scale. Scaffolds designed as ECM-like architectures incorporating into the host with minimal scarring/pain and facilitate angiogenesis. This study is related to combining of synthetic PCL and natural chitosan polymers to form 3D PCL/Chitosan core-shell structures for skin tissue engineering applications. Amongst the polymers used in tissue engineering, natural polymer chitosan and synthetic polymer poly(ε-caprolactone) (PCL) are widely preferred in the literature. Chitosan has been among researchers for a very long time because of its superior biocompatibility and structural resemblance to the glycosaminoglycan of bone tissue. However, the low mechanical flexibility and limited biodegradability properties reveals the necessity of using this polymer in a composite structure. On the other hand, PCL is a versatile polymer due to its low melting point (60°C), ease of processability, degradability with non-enzymatic processes (hydrolysis) and good mechanical properties. Nevertheless, there are also several disadvantages of PCL such as its hydrophobic structure, limited bio-interaction and susceptibility to bacterial biodegradation. Therefore, it became crucial to use both of these polymers together as a hybrid material in order to overcome the disadvantages of both polymers and combine advantages of those. The scaffolds here were fabricated by using electrospinning technique and the characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Photoelectron spectroscopy (XPS). Additionally, gas permeability test, mechanical test, thickness measurement and PBS absorption and shrinkage tests were performed for all type of scaffolds (PCL, chitosan and PCL/chitosan core-shell). By using ImageJ launcher software program (USA) from SEM photographs the average inter-fiber diameter values were calculated as 0.717±0.198 µm for PCL, 0.660±0.070 µm for chitosan and 0.412±0.339 µm for PCL/chitosan core-shell structures. Additionally, the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compare to PCL/chitosan core-shell structures. TEM images proved that homogenous and continuous bead free core-shell fibers were obtained. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. Measured average gas permeability value of produced PCL/chitosan core-shell structure was determined 2315±3.4 g.m-2.day-1. In the future, cell-material interactions of those developed PCL/chitosan core-shell structures will be carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Standard MTT assay and microscopic imaging methods will be used for the investigation of the cell attachment, proliferation and growth capacities of the developed materials.

Keywords: chitosan, coaxial electrospinning, core-shell, PCL, tissue scaffold

Procedia PDF Downloads 460
185 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 147
184 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production

Authors: Deepak Loura

Abstract:

Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.

Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance

Procedia PDF Downloads 48
183 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms

Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal

Abstract:

A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.

Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating

Procedia PDF Downloads 130
182 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 190
181 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia

Authors: Giuliana Murfet, Heidi Behrens

Abstract:

Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.

Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional

Procedia PDF Downloads 207
180 Exploring 3-D Virtual Art Spaces: Engaging Student Communities Through Feedback and Exhibitions

Authors: Zena Tredinnick-Kirby, Anna Divinsky, Brendan Berthold, Nicole Cingolani

Abstract:

Faculty members from The Pennsylvania State University, Zena Tredinnick-Kirby, Ph.D., and Anna Divinsky are at the forefront of an innovative educational approach to improve access in asynchronous online art courses. Their pioneering work weaves virtual reality (VR) technologies to construct a more equitable educational experience for students by transforming their learning and engagement. The significance of their study lies in the need to bridge the digital divide in online art courses, making them more inclusive and interactive for all distance learners. In an era where conventional classroom settings are no longer the sole means of instruction, Tredinnick-Kirby and Divinsky harness the power of instructional technologies to break down geographical barriers by incorporating an interactive VR experience that facilitates community building within an online environment transcending physical constraints. The methodology adopted by Tredinnick-Kirby, and Divinsky is centered around integrating 3D virtual spaces into their art courses. Spatial.io, a virtual world platform, enables students to develop digital avatars and engage in virtual art museums through a free browser-based program or an Oculus headset, where they can interact with other visitors and critique each other’s artwork. The goal is not only to provide students with an engaging and immersive learning experience but also to nourish them with a more profound understanding of the language of art criticism and technology. Furthermore, the study aims to cultivate critical thinking skills among students and foster a collaborative spirit. By leveraging cutting-edge VR technology, students are encouraged to explore the possibilities of their field, experimenting with innovative tools and techniques. This approach not only enriches their learning experience but also prepares them for a dynamic and ever-evolving art landscape in technology and education. One of the fundamental objectives of Tredinnick-Kirby and Divinsky is to remodel how feedback is derived through peer-to-peer art critique. Through the inclusion of 3D virtual spaces into the curriculum, students now have the opportunity to install their final artwork in a virtual gallery space and incorporate peer feedback, enabling students to exhibit their work opening the doors to a collaborative and interactive process. Students can provide constructive suggestions, engage in discussions, and integrate peer commentary into developing their ideas and praxis. This approach not only accelerates the learning process but also promotes a sense of community and growth. In summary, the study conducted by the Penn State faculty members Zena Tredinnick-Kirby, and Anna Divinsky represents innovative use of technology in their courses. By incorporating 3D virtual spaces, they are enriching the learners' experience. Through this inventive pedagogical technique, they nurture critical thinking, collaboration, and the practical application of cutting-edge technology in art. This research holds great promise for the future of online art education, transforming it into a dynamic, inclusive, and interactive experience that transcends the confines of distance learning.

Keywords: Art, community building, distance learning, virtual reality

Procedia PDF Downloads 46
179 Effect of Resistance Exercise on Hypothalamic-Pituitary-Gonadal Axis

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Abstract: Introduction: Physical activity may be related to male reproductive function by affecting on thehypothalamic-pituitary-gonadal(HPG) axis. Our aim was to determine the effects of 6 weeks resistance exercise on reproductive hormones, HPG axis. The hypothalamic-pituitary-gonadal (HPG) axis refers tothe effects of endocrine glands in three-level including (i) the hypothalamic releasing hormone GnRH, which is synthesized in in a small heterogenous neuronal population and released in a pulsatile fashion, (ii) the anterior pituitary hormones, follicle-stimulating hormone(FSH) and luteinizing hormone (LH) and (iii) the gonadal hormones, which include both steroid such as testosterone (T), estradiol and progesterone and peptide hormones (such as inhibin). Hormonal changes that create a more anabolic environment have been suggested to contribute to the adaptation to strength exercise. Physical activity has an extensive impact on male reproductive function depending upon the intensity and duration of the exercise and the fitness level of the individual. However, strenuous exercise represents a physical stress and inflammation changed that challenges homeostasis. Materials and methods: Sixteen male volunteered were included in a 6-week control period followed by 6 weeks of resistance training (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. intensity of training loading was 60%-75% of one maximum repetition. Participants performed 3 sets of 10 repetitions. Rest periods were two min between exercises and sets. Start with warm up exercises include: The muscles relax and stretch the body, which was for 10 minutes. Body composition, VO2max and the circulating level of free testosterone (fT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), sex hormone binding globulin (SHBG) and inhibin B measured prior and post 6-week intervention. The hormonal levels of each serum sample were measured using commercially available ELISA kits. Analysis of anthropometrical data and hormonal level were compared using the independent samples t- test in both groups and using SPSS (version 19). P ≤ 0.05 was considered statistically significant. Results: For muscle strength, both lower- and upper-body strength were increased significantly. Aerobic fitness level improved in trained participant from 39.4 ± 5.6 to 41.9 ± 5.3 (P = 0.002). fT concentration rise progressively in the trained group and was significantly greater than those in the control group (P = 0.000). By the end of the 6-week resistance training, serum SHBG significantly increased in the trained group compared with the control group (P = 0.013). In response to resistance training, LH, FSH and inhibin B were not significantly changed. Discussion: According to our finfings, 6 weeks of resistance training induce fat loss without any changes in body weight and BMI. A decline of 25.3% in percentage of body fat with statiscally same weight was due to increase in muscle mass that happened during resistance exercise periods . Six weeks of resistance training resulted in significant improvement in BF%, VO2max and increasing strength and the level of fT and SHBG.

Keywords: resistance, hypothalamic, pituitary, gonadal axis

Procedia PDF Downloads 380
178 Exposing The Invisible

Authors: Kimberley Adamek

Abstract:

According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.

Keywords: wind engineering, climate, visualization, architectural aerodynamics

Procedia PDF Downloads 339
177 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants

Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin

Abstract:

Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.

Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity

Procedia PDF Downloads 173
176 Snake Locomotion: From Sinusoidal Curves and Periodic Spiral Formations to the Design of a Polymorphic Surface

Authors: Ennios Eros Giogos, Nefeli Katsarou, Giota Mantziorou, Elena Panou, Nikolaos Kourniatis, Socratis Giannoudis

Abstract:

In the context of the postgraduate course Productive Design, Department of Interior Architecture of the University of West Attica in Athens, under the guidance of Professors Nikolaos Koyrniatis and Socratis Giannoudis, kinetic mechanisms with parametric models were examined for their further application in the design of objects. In the first phase, the students studied a motion mechanism that they chose from daily experience and then analyzed its geometric structure in relation to the geometric transformations that exist. In the second phase, the students tried to design it through a parametric model in Grasshopper3d for Rhino algorithmic processor and plan the design of its application in an everyday object. For the project presented, our team began by studying the movement of living beings, specifically the snake. By studying the snake and the role that the environment has in its movement, four basic typologies were recognized: serpentine, concertina, sidewinding and rectilinear locomotion, as well as its ability to perform spiral formations. Most typologies are characterized by ripples, a series of sinusoidal curves. For the application of the snake movement in a polymorphic space divider, the use of a coil-type joint was studied. In the Grasshopper program, the simulation of the desired motion for the polymorphic surface was tested by applying a coil on a sinusoidal curve and a spiral curve. It was important throughout the process that the points corresponding to the nodes of the real object remain constant in number, as well as the distances between them and the elasticity of the construction had to be achieved through a modular movement of the coil and not some elastic element (material) at the nodes. Using mesh (repeating coil), the whole construction is transformed into a supporting body and combines functionality with aesthetics. The set of elements functions as a vertical spatial network, where each element participates in its coherence and stability. Depending on the positions of the elements in terms of the level of support, different perspectives are created in terms of the visual perception of the adjacent space. For the implementation of the model on the scale (1:3), (0.50m.x2.00m.), the load-bearing structure that was studied has aluminum rods for the basic pillars Φ6mm and Φ 2.50 mm, for the secondary columns. Filling elements and nodes are of similar material and were made of MDF surfaces. During the design process, four trapezoidal patterns were picketed, which function as filling elements, while in order to support their assembly, a different engraving facet was done. The nodes have holes that can be pierced by the rods, while their connection point with the patterns has a half-carved recess. The patterns have a corresponding recess. The nodes are of two different types depending on the column that passes through them. The patterns and knots were designed to be cut and engraved using a Laser Cutter and attached to the knots using glue. The parameters participate in the design as mechanisms that generate complex forms and structures through the repetition of constantly changing versions of the parts that compose the object.

Keywords: polymorphic, locomotion, sinusoidal curves, parametric

Procedia PDF Downloads 74
175 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 396
174 Disaster Preparedness for People with Disabilities through EPPO's Educational Awareness Initiative

Authors: A. Kourou, A. Ioakeimidou, E. Pelli, M. Panoutsopoulou, V. Abramea

Abstract:

Worldwide there is a growing recognition that education is a critical component of any disaster impacts reduction effort and a great challenge too. Given this challenge, a broad range of awareness raising projects at all levels are implemented and are continuously evaluated by Earthquake Planning and Protection Organization (EPPO). This paper presents an overview of EPPO educational initiative (seminars, lectures, workshops, campaigns and educational material) and its evaluation results. The abovementioned initiative is focused to aware the public, train teachers and civil protection staff, inform students and educate people with disabilities on subjects related to earthquake reduction issues. The better understating of how human activity can link to disaster and what can be done at the individual, family or workplace level to contribute to seismic reduction are the main issues of EPPO projects. Survey results revealed that a high percentage of teachers (included the ones of special schools) from all over the country have taken the appropriate preparedness measures at schools. On the other hand, the implementation of earthquake preparedness measures at various workplaces (kindergartens, banks, utilities etc.) has still significant room for improvement. Results show that the employees in banks and public utilities have substantially higher rates in preventive and preparedness actions in their workplaces than workers in kindergartens and other workplaces. One of the EPPO educational priorities is to enhance earthquake preparedness of people with disabilities. Booklets, posters and applications have been created with the financial support of the Council of Europe, addressed to people who have mobility impairments, learning difficulties or cognitive disability (ή intellectual disabilities). Part of the educational material was developed using the «easy-to-read» method and Makaton language program with the collaboration of experts on special needs education and teams of people with cognitive disability. Furthermore, earthquake safety seminars and earthquake drills have been implemented in order to develop children’s, parents’ and teachers abilities and skills on earthquake impacts reduction. To enhance the abovementioned efforts, EPPO is a partner at prevention and preparedness projects supported by EU Civil Protection Financial Instrument. One of them is E-PreS’ project (Monitoring and Evaluation of Natural Hazard Preparedness at School Environment). The main objectives of E-PreS project are: 1) to create smart tools which define, simulate and evaluate drills procedure at schools, centers of vocational training of people with disabilities or other workplaces, and 2) to involve students or adults with disabilities in the E-PreS system evacuation procedure in case of earthquake, flood, or volcanic occurrence. Two other EU projects (RACCE educational kit and EVANDE educational platform) are also with the aim of contributing to raising awareness among people with disabilities, students, teachers, volunteers etc. It is worth mentioning that even though in Greece many efforts have been done till now to build awareness towards earthquakes and establish preparedness status for prospective earthquakes, there are still actions to be taken.

Keywords: earthquake, emergency plans, E-PreS project, people with disabilities, special needs education

Procedia PDF Downloads 240
173 Analysis of the Interest of High School Students in Tirana for Physical Activity, Sports and Foreign Languages

Authors: Zylfi Shehu, Shpetim Madani, Bashkim Delia

Abstract:

Context: The study focuses on the interest and engagement of high school students in Tirana, Albania, in physical activity, sports, and foreign languages. It acknowledges the numerous physiological benefits of physical activity, such as cardiovascular health and improved mood. It also recognizes the importance of physical activity in childhood and adolescence for proper skeletal development and long-term health. Research Aim: The main purpose of the study is to investigate and analyze the preferences and interests of male and female high school students in Tirana regarding their functional development, physical activity, sports participation, and choice of foreign languages. The aim is to provide insights for the students and teachers to guide future objectives and improve the quality of physical education. Methodology: The study employed a survey-based approach, targeting both male and female students in public high schools in Tirana. A total of 410 students aged 15 to 19 years old, participated in the study. The data collected from the survey were processed using Excel and presented through tables and graphs. Findings: The results revealed that team sports were more favored by the students, with football being the preferred choice among males, while basketball and volleyball were more popular among females. Additionally, English was found to be the most preferred foreign language, selected by a higher percentage of females (38.57%) compared to males (16.90%). German followed as the second preferred language. Theoretical Importance: This study contributes to the understanding of students' interests in physical activity, sports, and foreign languages in Tirana's high schools. The findings highlight the need to focus on specific sports and languages to cater to students' preferences and guide future educational objectives. It also emphasizes the importance of physical education in promoting students' overall well-being and highlights potential areas for policy and program improvement. Data Collection and Analysis Procedures: The study collected data through surveys administered to high school students in Tirana. The survey responses were processed and analyzed using Excel, and the findings were presented through tables and graphs. The data analysis allowed for the identification of preferences and trends among male and female students, providing valuable insights for future decision-making. Question Addressed: The study aimed to address the question of high school students' interest in physical activity, sports, and foreign languages. It sought to understand the preferences and choices made by students in Tirana and investigate factors such as gender, family income, and accessibility to extracurricular sports activities. Conclusion: The study revealed that high school students in Tirana show a preference for team sports, with football being the most favored among males and basketball and volleyball among females. English was found to be the most preferred foreign language. The findings provide important insights for educators and policymakers to enhance physical education programs and consider students' preferences and interests to foster a more effective learning environment. The study also emphasizes the importance of physical activity and sports in promoting students' physical and mental well-being.

Keywords: female, male, foreign languages, sports, physical education, high school students

Procedia PDF Downloads 68
172 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 119