Search results for: water ways
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11258

Search results for: water ways

9848 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67
9847 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 137
9846 Compliance to Compassion: How COVID-19 Changed the Way Educators Used Social Media to Collaborate with Families

Authors: Eloise Thomson

Abstract:

The COVID-19 global pandemic challenged our normative conceptualization of teaching across all age levels, requiring the transition to remote instruction, in some instances, literally overnight. Included in the rapidly changing education environment was the delivery of early childhood education. In Victoria, Australia, the capital city, Melbourne, became known as the most locked down city in the world. This presentation examines the ways educators used social media to collaborate with families before the COVID-19 pandemic and during the lockdown phase through the use of a Third Space conceptual framework and case study methodology. As a first step, the paper examines how social media may offer new opportunities for collaborative practice between educators and families. Second, the data is outlined and discussed with respect to collaborative practice and quality. Finally, a postscript then allows for insight into how educators’ practice of using social media to collaborate with families has been impacted by the COVID-19 global pandemic. Finally, the implications of the ways in which educators are using social media to collaborate with families are discussed. The use of social media in early-childhood education has the potential to provide a valuable platform for educators to connect with families and students. However, the use of social media by educators uncovered a dialogue of ‘quality’ and appeared to be dominated by evidence around compliance and attaining quality in a very specific, and perhaps narrow, way. The findings suggest a culture of compliance that is dominated by outcomes, standards and assessments and that this has changed the dynamics by which educators engage with families. Furthermore, findings highlighted the disparity between educators' and families' understanding of the intent of the collaborations themselves. This research was significant as it exposed the ways in which educators are engaging with social media, resulting in a discussion on the intent of collaborations, the questioning of imposed quality, and the notion that quality is measurable and exists in only one form.

Keywords: collaboration, compliance, early childhood, third space, pedagogy of caring, social media

Procedia PDF Downloads 65
9845 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students

Authors: Dina L. DiSantis

Abstract:

Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.

Keywords: education for sustainability, place-based learning, watershed science, water quality

Procedia PDF Downloads 154
9844 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 226
9843 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel

Authors: Shuo Huang, Huomiao Guo, Wenrui Huang

Abstract:

In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.

Keywords: density flow, estuarine, navigation channel, structure

Procedia PDF Downloads 258
9842 Ground Water Sustainable Management in Ethiopia, Africa

Authors: Ebissa Gadissa Kedir

Abstract:

This paper presents the potential groundwater assessment and sustainable management in the selected study area. It is the most preferred water source in all climatic zones for its convenient availability, drought dependability, excellent quality, and low development cost. The rural areas, which account for more than 85% of the country's population, are encountered a shortage of potable water supply which can be solved by proper groundwater utilization. For the present study area, the groundwater potential is assessed and analysed. Thus, the study area falls in four potential groundwater zones ranging from poor to high. However, the current groundwater management practices in the study area are poor. Despite the pervasive and devastating challenges, immediate and proper responses have not yet been given to the problem. Thus, such frustrating threats and challenges have initiated the researcher to work in the project area.

Keywords: GW potential, GW management, GW sustainability, South gonder, Ethiopia

Procedia PDF Downloads 66
9841 Rewilding the River: Assessing the Environmental Effects and Regulatory Influences of the Condit Dam Removal Process

Authors: Neda Safari, Jacob Petersen-Perlman

Abstract:

There are more than two million dams in the United States, and a considerable portion of them are either non-operational or approaching the end of their designed lifespan. However, this emerging trend is new, and the majority of dam sites have not undergone thorough research and assessments after their removal to determine the overall effectiveness of restoration initiatives, particularly in the case of large-scale dams that may significantly impact their surrounding areas. A crucial factor to consider is the lack of specific regulations pertaining to dam removal at the federal level. Consequently, other environmental regulations that were not originally designed with dam removal considerations are used to execute these projects. This can result in delays or challenges for dam removal initiatives. The process of removing dams is usually the most important first step to restore the ecological and biological health of the river, but often there is a lack of measurable indicators to assess if it has achieved its intended objectives. In addition, the majority of studies on dam removal are only short-term and focus on a particular measure of response. Therefore, it is essential to conduct extensive and continuous monitoring to analyze the river's response throughout every aspect. Our study is divided into two sections. The first section of my research will analyze the establishment and utilization of dam removal laws and regulations in the Condit Dam removal process. We will highlight the areas where the frameworks for policy and dam removal projects remain in need of improvement in order to facilitate successful dam removals in the future. In this part, We will review the policies and plans that affected the decision-making process to remove the Condit dam while also looking at how they impacted the physical changes to the river after the dam was removed. In the second section, we will look at the effects of the dam removal over a decade later and attempt to determine how the river's physical response has been impacted by this modification. Our study aims to investigate the Condit dam removal process and its impact on the ecological response of the river. We anticipate identifying areas for improvement in policies pertaining to dam removal projects and exploring ways to enhance them to ensure improved project outcomes in the future.

Keywords: dam removal, ecolocgical change, water related regulation, water resources

Procedia PDF Downloads 45
9840 Rainwater Harvesting is an Effective Tool for City’s Storm Water Management and People’s Willingness to Install Rainwater Harvesting System in Buildings: A Case Study in Kazipara, Dhaka, Bangladesh

Authors: M. Abu Hanif, Anika Tabassum, Fuad Hasan Ovi, Ishrat Islam

Abstract:

Water is essential for life. Enormous quantities of water are cycled each year through hydrologic cycle but only a fraction of circulated water is available each year for human use. Dhaka, the capital of Bangladesh is the 19th mega city in the world with a population of over 14 million (World City Information, 2011). As a result the growth of urban population is increasing rapidly; the city is not able to manage with altering situations due to resource limitations and management capacity. Water crisis has become an acute problem faced by the inhabitants of Dhaka city. It is found that total water demand in Dhaka city is 2,240 million liter per day (MLD) whereas supply is 2,150 (MLD). According to Dhaka Water Supply and Sewerage Authority about 87 percent of this supply comes from groundwater resources and rest 13 percent from surface water. According to Dhaka Water Supply and Sewerage Authority it has been found that the current groundwater depletion rate is 3.52 meter per year. Such a fast depletion of the water table will result in intrusion of southern saline water into the groundwater reservoir, depriving this mega city of pure drinking water. This study mainly focus on the potential of Rainwater Harvesting System(RWHS) in Kazipara area of Dhaka city, determine the perception level of local people in installation of rainwater harvesting system in their building and identify the factors regarding willingness of owner in installing rainwater harvesting system. As most of the residential area of Dhaka city is unplanned with small plots, Kazipara area has been chosen as study area which depicts similar characteristics. In this study only roof top area is considered as catchment area and potential of rainwater harvesting has been calculated. From the calculation it is found that harvested rainwater can serve the 66% of demand of water for toilet flushing and cleaning purposes for the people of Kazipara. It is also observed that if only rooftop rainwater harvesting applied to all the structures of the study area then two third of surface runoff would be reduced than present surface runoff. In determining the perception of local people only owners of the buildings were. surveyed. From the questionnaire survey it is found that around 75% people have no idea about the rainwater harvesting system. About 83% people are not willing to install rainwater harvesting system in their dwelling. The reasons behind the unwillingness are high cost of installation, inadequate space, ignorance about the system, etc. Among 16% of the willing respondents who are interested in installing RWHS system, it was found that higher income, bigger size of buildings are important factors in willingness of installing rainwater harvesting system. Majority of the respondents demanded for both technical and economical support to install the system in their buildings. Government of Bangladesh has taken some initiatives to promote rainwater harvesting in urban areas. It is very much necessary to incorporate rainwater harvesting device and artificial recharge system in every building of Dhaka city to make Dhaka city self sufficient in water supply management and to solve water crisis problem of megacity like as Dhaka city.

Keywords: rainwater harvesting, water table, willingness, storm water

Procedia PDF Downloads 244
9839 The Effect of Nanotechnology Structured Water on Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia: A Double-Blinded Randomized Study

Authors: Ali Kamal M. Sami, Safa Almukhtar, Alaa Al-Krush, Ismael Hama-Amin Akha Weas, Ruqaya Ahmed Alqais

Abstract:

Introduction and Objectives Lower urinary tract symptoms (LUTS) are common among men with benign prostatic hyperplasia (BPH). The combination of 5 alpha-reductase inhibitors and alpha-blockers has been used as a conservative treatment of male LUTS secondary to BPH. Nanotechnology structured water magnalife is a type of water that is produced by modulators and specific frequency and energy fields that transform ordinary water into this Nanowater. In this study, we evaluated the use of Nano-water with the conservative treatment and to see if it improves the outcome and gives better results in those patients with LUTS/BPH. Material and methods For a period of 3 months, 200 men with International Prostate Symptom Score (IPSS)≥13, maximum flow rate (Qmax)≤ 15ml/s, and prostate volume > 30 and <80 ccs were randomly divided into two groups. Group A 100 men were given Nano-water with the (tamsulosindutasteride) and group B 100 men were given ordinary bottled water with the (tamsulosindutasteride). The water bottles were unlabeled and were given in a daily dose of 20ml/kg body weight. Dutasteride 0.5mg and tamsulosin 0.4 mg daily doses. Both groups were evaluated for the IPSS, Qmax, Residual Urine (RU), International Index of Erectile Function–Erectile Function (IIEF-EF) domain at the beginning (baseline data), and at the end of the 3 months. Results Of the 200 men with LUTS who were included in this study, 193 men were followed, and 7 men dropped out of the study for different reasons. In group A which included 97 men with LUTS, IPSS decreased by 16.82 (from 20.47 to 6.65) (P<0.00001) and Qmax increased by 5.73 ml/s (from 11.71 to 17.44) (P<0.00001) and RU <50 ml in 88% of patients (P<0.00001) and IIEF-EF increased to 26.65 (from 16.85) (P<0.00001). While in group B, 96 men with LUTS, IPSS decreased by 8.74(from 19.59 to 10.85)(P<0.00001) and Qmax increased by 4.67 ml/s(from 10.74 to 15.41)(P<0.00001), RU<50 ml in 75% of patients (P<0.00001), and IIEF-EF increased to 21(from 15.87)(P<0.00001). Group A had better results than group B. IPSS in group A decreased to 6.65 vs 10.85 in group B(P<0.00001), also Qmax increased to 17.44 in group A vs 15.41 in group B(P<0.00001), group A had RU <50 ml in 88% of patients vs 75% of patients in group B(P<0.00001).Group A had better IIEF-EF which increased to 26.65 vs 21 in group B(P<0.00001). While the differences between the baseline data of both groups were statistically not significant. Conclusion The use of nanotechnology structured water magnalife gives a better result in terms of LUTS and scores in patients with BPH. This combination is showing improvements in IPSS and even in erectile function in those men after 3 months.

Keywords: nano water, lower urinary tract symptoms, benign prostatic hypertrophy, erectile dysfunction

Procedia PDF Downloads 71
9838 Suitability Assessment of Water Harvesting and Land Restoration in Catchment Comprising Abandoned Quarry Site in Addis Ababa, Ethiopia

Authors: Rahel Birhanu Kassaye, Ralf Otterpohl, Kumelachew Yeshitila

Abstract:

Water resource management and land degradation are among the critical issues threatening the suitable livability of many cities in developing countries such as Ethiopia. Rapid expansion of urban areas and fast growing population has increased the pressure on water security. On the other hand, the large transformation of natural green cover and agricultural land loss to settlement and industrial activities such as quarrying is contributing to environmental concerns. Integrated water harvesting is considered to play a crucial role in terms of providing alternative water source to insure water security and helping to improve soil condition, agricultural productivity and regeneration of ecosystem. Moreover, it helps to control stormwater runoff, thus reducing flood risks and pollution, thereby improving the quality of receiving water bodies and the health of inhabitants. The aim of this research was to investigate the potential of applying integrated water harvesting approaches as a provision for water source and enabling land restoration in Jemo river catchment consisting of abandoned quarry site adjacent to a settlement area that is facing serious water shortage in western hilly part of Addis Ababa city, Ethiopia. The abandoned quarry site, apart from its contribution to the loss of aesthetics, has resulted in poor water infiltration and increase in stormwater runoff leading to land degradation and flooding in the downstream. Application of GIS and multi-criteria based analysis are used for the assessment of potential water harvesting technologies considering the technology features and site characteristics of the case study area. Biophysical parameters including precipitation, surrounding land use, surface gradient, soil characteristics and geological aspects are used as site characteristic indicators and water harvesting technologies including retention pond, check dam, agro-forestation employing contour trench system were considered for evaluation with technical and socio-economic factors used as parameters in the assessment. The assessment results indicate the different suitability potential among the analyzed water harvesting and restoration techniques with respect to the abandoned quarry site characteristics. Application of agro-forestation with contour trench system with the revegetation of indigenous plants is found to be the most suitable option for reclamation and restoration of the quarry site. Successful application of the selected technologies and strategies for water harvesting and restoration is considered to play a significant role to provide additional water source, maintain good water quality, increase agricultural productivity at urban peri-urban interface scale and improve biodiversity in the catchment. The results of the study provide guideline for decision makers and contribute to the integration of decentralized water harvesting and restoration techniques in the water management and planning of the case study area.

Keywords: abandoned quarry site, land reclamation and restoration, multi-criteria assessment, water harvesting

Procedia PDF Downloads 216
9837 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice

Authors: Sultana Afrin Nipa

Abstract:

Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.

Keywords: colorado river, indigenous rights, law of the river, water governance, water justice

Procedia PDF Downloads 32
9836 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, markov chain, optimization, waste water

Procedia PDF Downloads 412
9835 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 147
9834 Feasibility of Deployable Encasing for a CVDR (Cockpit Voice and Data Recorder) in Commercial Aircraft

Authors: Vishnu Nair, Rohan Kapoor

Abstract:

Recent commercial aircraft crashes demand a paradigm shift in how the CVDRs are located and recovered, particularly if the aircraft crashes in the sea. CVDR (Cockpit Voice and Data Recorder) is most vital component out of the entire wreckage that can be obtained in order to investigate the sequence of events leading to the crash. It has been a taxing and exorbitantly expensive process locating and retrieving the same in the massive water bodies as it was seen in the air crashes in the recent past, taking the unfortunate Malaysia airlines MH-370 crash into account. The study aims to provide an aid to the persisting problem by improving the buoyant as-well-as the aerodynamic properties of the proposed CVDR encasing. Alongside this the placement of the deployable CVDR on the surface of the aircraft and floatability in case of water submersion are key factors which are taken into consideration for a better resolution to the problem. All of which results into the Deployable-CVDR emerging to the surface of the water-body. Also the whole system is designed such that it can be seamlessly integrated with the current crop of commercial aircraft. The work is supported by carrying out a computational study with the help Ansys-Fluent combination.

Keywords: encasing, buoyancy, deployable CVDR, floatability, water submersion

Procedia PDF Downloads 299
9833 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant

Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan

Abstract:

Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.

Keywords: olefin, spent caustic, red oil, caustic wash tower

Procedia PDF Downloads 447
9832 CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation

Authors: Masashi Kanazawa, Takaaki Nakano, Masaaki Takemoto, Tomonori Imamura, Mamiko Sugimura, Toshitaka Ito

Abstract:

Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks.

Keywords: CT scan, intoxication, pulmonary edema, water-soluble paint

Procedia PDF Downloads 173
9831 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
9830 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 210
9829 A Strategic Water and Energy Project as a Climate Change Adaptation Tool for Israel, Jordan and the Middle East

Authors: Doron Markel

Abstract:

Water availability in most of the Middle East (especially in Jordan) is among the lowest in the world and has been even further exacerbated by the regional climatic change and the reduced rainfall. The Araba Valley in Israel is disconnected from the national water system. On the other hand, the Araba Valley, both in Israel and Jordan, is an excellent area for solar energy gaining. The Dead Sea (Israel and Jordan) is a hypersaline lake which its level declines at a rate of more than 1 m/y. The decline stems from the increasing use of all available freshwater resources that discharge into the Dead Sea and decreasing natural precipitation due to climate change in the Middle East. As an adaptation tool for this humanmade and Climate Change results, a comprehensive water-energy and environmental project were suggested: The Red Sea-Dead Sea Conveyance. It is planned to desalinate the Red Sea water, supply the desalinated water to both Israel and Jordan, and convey the desalination brine to the Dead Sea to stabilize its water level. Therefore, the World Bank had led a multi-discipline feasibility study between 2008 and 2013, that had mainly dealt with the mixing of seawater and Dead Sea Water. The possible consequences of such mixing were precipitation and possible suspension of secondary Gypsum, as well as blooming of Dunaliella red algae. Using a comprehensive hydrodynamic-geochemical model for the Dead Sea, it was predicted that while conveying up to 400 Million Cubic Meters per year of seawater or desalination brine to the Dead Sea, the latter would not be stratified as it was until 1979; hence Gypsum precipitation and algal blooms would be neglecting. Using another hydrodynamic-biological model for the Red Sea, it was predicted the Seawater pump from the Gulf of Eilat would not harm the ecological system of the gulf (including the sensitive coral reef), giving a pump depth of 120-160 m. Based on these studies, a pipeline conveyance was recommended to convey desalination brine to the Dead Sea with the use of a hydropower plant, utilizing the elevation difference of 400 m between the Red Sea and the Dead Sea. The complementary energy would come from solar panels coupled with innovative storage technology, needed to produce a continuous energy production for an appropriate function of the desalination plant. The paper will describe the proposed project as well as the feasibility study results. The possibility to utilize this water-energy-environmental project as a climate change adaptation strategy for both Israel and Jordan will also be discussed.

Keywords: Red Sea, Dead Sea, water supply, hydro-power, Gypsum, algae

Procedia PDF Downloads 113
9828 The Mitidja between Drought and Water Pollution

Authors: Aziez Ouahiba, Remini Boualam, Habi Mohamed

Abstract:

the growth and the development of a pay are strongly related to the existence or the absence of water in this area, The sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, global warming fact that temperature is increasingly high and rainfall is increasingly low which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: rainfall, groundwater of mitidja, irrigation, pollution

Procedia PDF Downloads 400
9827 Community Adaptation of Drought Disaster in Grobogan District, Central Java Province, Indonesia

Authors: Chatarina Muryani, Sarwono, Sugiyanto Heribentus

Abstract:

Major part of Grobogan District, Central Java Province, Indonesia, always suffers from drought every year. The drought has implications toward almost all of the community activities, both domestic, agriculture, livestock, and industrial. The aim of this study was to determine (1) the drought distribution area in Grobogan District in 2015; (2) the impact of drought; and (3) the community adaptation toward the drought. The subject of the research was people who were impacted by the drought, purposive sampling technique was used to draw the sample. The data collection method was using field observation and in-depth interview while the data analysis was using descriptive analysis. The results showed that (1) in 2015, there were 14 districts which were affected by the drought and only 5 districts which do not suffer from drought, (2) the drought impacted to the reduction of water for domestic compliance, reduction of agricultural production, reduction of public revenue, (3) community adaptation to meet domestic water need was by making collective deep-wells and building water storages, adaptation in agriculture was done by setting the cropping pattern, while adaptation on economics was by allocating certain amount of funds for the family in anticipation of drought, which was mostly to purchase water.

Keywords: adaptation, distribution, drought, impacts

Procedia PDF Downloads 378
9826 Viability Study of the Use of Solar Energy for Water Heating in Homes in Brazil

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The sun is an inexhaustible source and harnessing its potential both for heating and for power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on the planet, only indirectly, as it is responsible for virtually all other energy sources, such as: Generates the evaporation source of the water cycle, which allows the impoundment and the consequent generation of electricity (hydroelectricity); Winds are caused by large-scale atmospheric induction caused by solar radiation; Oil, coal and natural gas were generated from waste plants and animals that originally obtained the energy needed for its development of solar radiation. Thus, the idea of using solar energy for practical purposes for the benefit of man is not new, as it accompanies the story since the beginning of time, which means that the sun was always of utmost importance in the design of shelters, or homes is, constructed by taking into consideration the use of sunlight, practicing what was being lost through the centuries, until a time when the buildings started to be designed completely independent of the sun. However, the climatic rigors still needed to be fought, only artificially and today seen as unsustainable, with additional facilities fueled by energy consumption. This paper presents a study on the feasibility of using solar energy for heating water in homes, developing a simplified methodology covering the mode of operation of solar water heaters, solar potential existing alternative systems of Brazil, the international market, and barriers encountered.

Keywords: solar energy, solar heating, solar project, water heating

Procedia PDF Downloads 332
9825 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 86
9824 Phenol Removal from Water in the Presence of Nano-TiO₂ and a Natural Activated Carbon: Intensive and Extensive Processes

Authors: Hanane Belayachi, Fadila Nemchi, Amel Belayachi, Sarra Bourahla, Mostefa Belhakem

Abstract:

In this work, two photocatalytic processes for the degradation of phenol in water are presented. The first one is extensive (EP), which is carried out in a treatment chain of two steps, allowing the adsorption of the pollutant by a naturally activated carbon from the grapes. This operation is followed by a photocatalytic degradation of the residual phenol in the presence of TiO₂. The second process is intensive (IP) and is realized in one step in the presence of a hybrid photocatalytic nanomaterial prepared from naturally activated carbon and TiO₂. The evaluation of the two processes, EP and IP, is based on the analytical monitoring of the initial and final parameters of the water to be treated, i.e., the phenol concentration by liquid phase chromatography (HPLC) and total organic carbon (TOC). For both processes, the sampling was carried out every 10 min for 120 min of treatment time to measure the phenol concentrations. The elimination and degradation rates in the case of the intensive process are better than the extensive process. In both processes, the catechol molecule was detected as an under product of degradation. In the IP case, this intermediate phenol was totally eliminated, and only traces of catechol persisted in the water.

Keywords: photocatalysis, hybrid, activated carbon, phenol

Procedia PDF Downloads 53
9823 Slag-Heaps: From Piles of Waste to Valued Topography

Authors: René Davids

Abstract:

Some Western countries are abandoning coal and finding cleaner alternatives, such as solar, wind, hydroelectric, biomass, and geothermal, for the production of energy. As a consequence, industries have closed, and the toxic contaminated slag heaps formed essentially of discarded rock that did not contain coal are being colonized by spontaneously generated plant communities. In becoming green hiking territory, goat farms, viewing platforms, vineyards, great staging posts for species experiencing, and skiing slopes, many of the formerly abandoned hills of refuse have become delightful amenities to the surrounding communities. Together with the transformation of many industrial facilities into cultural venues, these changes to the slag hills have allowed the old coal districts to develop a new identity, but in the process, they have also literally buried the past. This essay reviews a few case studies to analyze the different ways slag heaps have contributed to the cultural landscape in the ex-coal county while arguing that it is important when deciding on their future, that we find ways to make the environmental damage that the extraction industry caused visibly and honor the lives of the people that worked under often appalling conditions in them.

Keywords: slag-heaps, mines, extraction, remediation, pollution

Procedia PDF Downloads 71
9822 Risk Aversion and Dynamic Games between Hydroelectric Operators under Uncertainty

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

This article analyses management of hydropower dams within two different industrial structures: monopolistic and oligopolistic; when hydroelectricity producers are risk averse and face demand uncertainty. In each type of market structure we determine the water release path in closed-loop equilibrium. We show how a monopoly can manage its hydropower dams by additional pumping or storage depending on the relative abundance of water between different regions to smooth the effect of uncertainty on electricity prices. In the oligopolistic case with symmetric rates of risk aversion, we determine the conditions under which the relative scarcity (abundance) of water in the dam of a hydroelectric operator can favor additional strategic pumping (storage) in its competitor’s dams. When there is asymmetry of the risk aversion coefficient, the firm’s hydroelectricity production increases as its competitor’s risk aversion increases, if and only if the average recharge speed of the competitor’s dam exceeds a certain threshold, which is an increasing function of its average water inflows.

Keywords: asymmetric risk aversion, closed-loop Cournot competition, electricity wholesale market, hydropower dams

Procedia PDF Downloads 354
9821 Distribution of Current Emerging Contaminants in South Africa Surface and Groundwater

Authors: Jou-An Chen, Julio Castillo, Errol Duncan Cason, Gabre Kemp, Leana Esterhuizen, Angel Valverde Portal, Esta Van Heerden

Abstract:

Emerging contaminants (EC) such as pharmaceutical and personal care products have been accumulating for years in water bodies all over the world. However, very little is known about the occurrences, levels, and effects of ECs in South African water resources. This study provides an initial assessment of the distribution of eight ECs (Acetaminophen, Atrazine, Terbuthlyazine, Carbamazepine, Phenyton, Sulfmethoxazole, Nevirapine and Fluconozole) in fifteen water sources from the Free State and Easter Cape provinces of South Africa. Overall, the physiochemical conditions were different in surface and groundwater samples, with concentrations of several elements such as B, Ca, Mg, Na, NO3, and TDS been statistically higher in groundwater. In contrast, ECs levels, quantified at ng/mL using the LC/MS/ESI, were much lower in groundwater samples. The ECs with higher contamination levels were Carbamazepine, Sulfmethoxazole, Nevirapine, and Terbuthlyazine, while the most widespread were Sulfmethoxazole and Fluconozole, detected in all surface and groundwater samples. Fecal and E. coli tests indicated that surface water was more contaminated than groundwater. Microbial communities, assessed using NGS, were dominated by the phyla Proteobacteria and Bacteroidetes, in both surface and groundwater. Actinobacteria, Planctomycetes, and Cyanobacteria, were more dominant in surface water, while Verrucomicrobia were overrepresented in groundwater. In conclusion, ECs contamination is closely associated with human activities (human wastes). The microbial diversity identified can suggest possible biodegradation processes.

Keywords: emerging contaminants, EC, personal care products, pharmaceuticals, natural attenuation process

Procedia PDF Downloads 219
9820 Determination of the Water Needs of Some Crops Irrigated with Treated Water from the Sidi Khouiled Wastewater Treatment Plant in Ouargla, Algeria

Authors: Dalila Oulhaci, Mehdi Benlarbi, Mohammed Zahaf

Abstract:

The irrigation method is fundamental for maintaining a wet bulb around the roots of the crop. This is the case with localized irrigation, where soil moisture can be maintained permanently around the root system between the two water content extremes. Also, one of the oldest methods used since Roman times throughout North Africa and the Near East is based on the frequent dumping of water into porous pottery vases buried in the ground. In this context, these two techniques have been combined by replacing the pottery vase with plastic bottles filled with sand that discharge water through their perforated walls into the surrounding soil. The first objective of this work is the theoretical determination using CLIMWAT and CROPWAT software of the irrigation doses of some crops (palm, wheat, and onion) and experimental by measuring the humidity of the soil before and after watering. The second objective is to determine the purifying power of the sand filter in the bottle. Based on the CROPWAT software results, the date palm needs 18.5 mm in the third decade of December, 57.2 mm in January, and 73.7 mm in February, whereas the doses received by experimentally determined by means of soil moisture before and after irrigation are 19.5 mm respectively, 79.66 mm and 95.66 mm. The onion needs 14.3 mm in the third decade of December of, 59.1 mm in January, and 80 mm in February, whereas the experimental dose received is 15.07 mm, respectively, 64.54 and 86.8 mm. The total requirements for the vegetative period are estimated at 1642.6 mm for date palms, 277.4 mm for wheat, and 193.5 mm for onions. The removal rate of the majority of pollutants from the bottle is 80%. This work covers, on the one hand, the context of water conservation, sustainable development, and protection of the environment, and on the other, the agricultural field.

Keywords: irrigation, sand, filter, humidity, bottle

Procedia PDF Downloads 66
9819 Release of PVA from PVA/PA Compounds into Water Solutions

Authors: J. Klofac, P. Bazant, I. Kuritka

Abstract:

This work is focused on the preparation of polymeric blend composed of polyamide (PA) and polyvinyl alcohol (PVA) with the intention to explore its basic characteristics important for potential use in medicine, especially for drug delivery systems. PA brings brilliant mechanical properties to the blend while PVA is inevitable due to its water solubility. Blend with different PA/PVA ratios were prepared and the release study of PVA into the water was carried out in a time interval 0-48 hours via the gravimetric method. The weight decrease is caused by the leaching of PVA domains what can be also followed by the optical and scanning electron microscopy. In addition, the thermal properties and the miscibility of blend components were evaluated by the differential scanning calorimeter. On the bases of performed experiments, it was found that the kinetics, continuity development and micro structure features of PA/PVA blends is strongly dependent on the blend composition and miscibility of its components.

Keywords: releas study, polyvinyl alcohol, polyamide morphology, polymeric blend

Procedia PDF Downloads 397