Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9502

Search results for: machine resistance training

8092 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 106
8091 A Qualitative Study of Multiracial Experiences of Microaggressions in Mental Health Counseling and Counselor Education: Implications and Recommendations for Culturally Competent Training and Practice

Authors: C. Peeper McDonald

Abstract:

Despite the multiracial population growing exponentially in the world and especially in the U.S., there continues to be a lack of culturally responsive research addressing the unique experiences and needs of this population, especially within counseling and counselor education settings. It is evident that their unique racial microaggressive experiences need to be better understood within the field of professional counseling to not only underscore competent training and practice but also culturally responsive training and practice. The participants of this study were 13 (n=13) individuals from the United States who identified as multiracial and said they had a microaggressive experience with either their counselor or counseling professor. Data were gathered through one-on-one, semi-structured interviews. The analysis employed phenomenological methods based on the transcendental approach, resulting in themes that encapsulated the core of the participants' experiences, including multiracial microaggressions that are derogatory and perpetuate privilege/oppression; counselors and their training programs should embody safety, support, attentiveness, inter-personal sensitivity, and awareness of the impact on others; microaggressions negatively affect the counseling relationship and outcomes; awareness surrounding the emotional impact of microaggressions; strength-based responses and future responses to microaggressions; and advocacy and suggestions for counselors and counselor educators. These themes are discussed in detail, and recommendations for researchers, counselor educators, and professional counselors to improve training and practice are provided. This U.S. study's insights into the Multiracial experience of microaggressions within the mental health profession can inform global mental health practices by highlighting the need for culturally responsive counseling that recognizes and addresses racial nuances. Such knowledge is transferable to international settings where multiracial populations may also encounter similar challenges, aiding in the development of global standards for culturally competent counseling practices.

Keywords: culturally responsive training and practice, mental health, microaggressions, multiracial

Procedia PDF Downloads 47
8090 Promoting Diversity and Equity through Interdisciplinary Leadership Training

Authors: Sharon Milberger, Jane Turner, Denise White-Perkins

Abstract:

Michigan shares the overall U.S. national need for more highly qualified professionals who have knowledge and experience in the use of evidence-based practices to meet the special health care needs of children, adolescents, and adults with neurodevelopmental disabilities including autism spectrum disorder (DD/ASD). The Michigan Leadership Education in Neurodevelopmental Disabilities (MI-LEND) program is a consortium of six universities that spans the state of Michigan and serves more than 181,800 undergraduate, graduate, and professional students. The purpose of the MI LEND program is to improve the health of infants, children and adolescents with disabilities in Michigan by training individuals from different disciplines to assume leadership roles in their respective fields and work across disciplines. The MI-LEND program integrates “L.I.F.E.” perspectives into all training components. L.I.F.E. is an acronym for Leadership, Interdisciplinary, Family-Centered and Equity perspectives. This paper will describe how L.I.F.E. perspectives are embedded into all aspects of the MI-LEND training program including the application process, didactic training, community and clinical experiences, discussions, journaling and projects. Specific curriculum components will be described including content from a training module dedicated to Equity. Upon completion of the Equity module, trainees are expected to be able to: 1) Use a population health framework to identify key social determinants impacting families and children; 2) Explain how addressing bias and providing culturally appropriate linguistic care/services can influence patient/client health and wellbeing; and 3) Describe the impact of policy and structural/institutional factors influencing care and services for children with DD/ASD and their families. Each trainee completes two self-assessments: the Cultural and Linguistic Competence Health Practitioner Assessment and the other assessing social attitudes/implicit bias. Trainees also conduct interviews with a family with a child with DD/ASD. In addition, interdisciplinary Equity-related group activities are incorporated into face-to-face training sessions. Each MI-LEND trainee has multiple ongoing opportunities for self-reflection through discussion and journaling and completion of a L.I.F.E. project as a culminating component of the program. The poster will also discuss the challenges related to teaching and measuring successful outcomes related to diversity/equity perspectives.

Keywords: disability, diversity, equity, training

Procedia PDF Downloads 164
8089 Improvement of the Reliability and the Availability of a Production System

Authors: Lakhoua Najeh

Abstract:

Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.

Keywords: production system, diagnosis, SADT method, FMECA method

Procedia PDF Downloads 140
8088 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 71
8087 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines

Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior

Abstract:

Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.

Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro

Procedia PDF Downloads 276
8086 The Need for a More Defined Role for Psychologists in Adult Consultation Liaison Services in Hospital Settings

Authors: Ana Violante, Jodie Maccarrone, Maria Fimiani

Abstract:

In the United States, over 30 million people are hospitalized annually for conditions that require acute, 24-hour, supervised care. The experience of hospitalization can be traumatic, exposing the patient to loss of control, autonomy, and productivity. Furthermore, 40% of patients admitted to hospitals for general medical illness have a comorbid psychiatric diagnosis. Research suggests individuals admitted with psychiatric comorbidities experience poorer health outcomes, higher utilization rates and increased overall cost of care. Empirical work suggests hospital settings that include a consultation liaison (CL) service report reduced length of stay, lower costs per patient, improved medical staff and patient satisfaction and reduced readmission after 180 days. Despite the overall positive impact CL services can have on patient care, it is estimated that only 1% - 2.8% of hospital admits receive these services, and most research has been conducted by the field of psychiatry. Health psychologists could play an important role in increasing access to this valuable service, though the extent to which health psychologists participate in CL settings is not well known. Objective: Outline the preliminary findings from an empirical study to understand how many APPIC internship training programs offer adult consultation liaison rotations within inpatient hospital settings nationally, as well as describe the specific nature of these training experiences. Research Method/Design: Data was exported into Excel from the 2022-2023 APPIC Directory categorized as “health psychology” sites. It initially returned a total of 537 health training programs out 1518 total programs (35% of all APPIC programs). A full review included a quantitative and qualitative comprehensive review of the APPIC program summary, the site website, and program brochures. The quantitative review extracted the number of training positions; amount of stipend; location or state of program, patient, population, and rotation. The qualitative review examined the nature of the training experience. Results: 29 (5%) of all APPIC health psychology internship training programs (2%) respectively of all APPIC training internship programs offering internship CL training were identified. Of the 29 internship training programs, 16 were exclusively within a pediatric setting (55%), 11 were exclusively within an adult setting (38%), and two were a mix of pediatric and adult settings (7%). CL training sites were located to 19 states, offering a total of 153 positions nationally, with Florida containing the largest number of programs (4). Only six programs offered 12-month training opportunities while the rest offered CL as a major (6 month) to minor (3-4 month) rotation. The program’s stipend for CL training positions ranged from $25,000 to $62,400, with an average of $32,056. Conclusions: These preliminary findings suggest CL training and services are currently limited. Training opportunities that do exist are mostly limited to minor, short rotations and governed by psychiatry. Health psychologists are well-positioned to better define the role of psychology in consultation liaison services and enhance and formalize existing training protocols. Future research should explore in more detail empirical outcomes of CL services that employ psychology and delineate the contributions of psychology from psychiatry and other disciplines within an inpatient hospital setting.

Keywords: consultation liaison, health psychology, hospital setting, training

Procedia PDF Downloads 73
8085 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 136
8084 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 482
8083 Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine

Authors: Mahesh S. Harne, Sunil V. Deshmukh

Abstract:

A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise.

Keywords: continuous passive motion machine, ergonomics, physiotherapy, quality function deployment

Procedia PDF Downloads 184
8082 Eight Weeks of Suspension Systems Training on Fat Mass, Jump and Physical Fitness Index in Female

Authors: Che Hsiu Chen, Su Yun Chen, Hon Wen Cheng

Abstract:

Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Core stability exercises on instability device (such as the TRX suspension systems) were found to be able to induce higher core muscle activity than performing on a stable surface. However, high intensity interval TRX suspension exercises training on sport performances remain unclear. The purpose of this study was to examine whether high intensity TRX suspension training could improve sport performance. Twenty-four healthy university female students (age 19.0 years, height 157.9 cm, body mass 51.3 kg, fat mass 25.2 %) were voluntarily participated in this study. After a familiarization session, each participant underwent five suspension exercises (e.g., hip abduction in plank alternative, hamstring curl, 45-degree row, lunge and oblique crunch). Each type of exercise was performed for 30 seconds, followed by 30 seconds break, two times per week for eight weeks while each exercise session was increased by 10 seconds every week. The results showed that the fat mass (about 12.92%) decreased significantly, sit and reach test (9%), 1 minute sit-up test (17.5%), standing broad jump (4.8%), physical fitness index (10.3%) increased significantly after 8-week high intensity TRX suspension training. Hence, eight weeks of high intensity interval TRX suspension exercises training can improve hamstring flexibility, trunk endurance, jump ability, aerobic fitness and fat mass percentage decreased substantially.

Keywords: core endurance, jump, flexibility, cardiovascular fitness

Procedia PDF Downloads 407
8081 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 138
8080 A Study of Mental Health of Wife of Patients with HIV+ and Effects of Life Skills on Promotion of Their Mental Health

Authors: Ali Karimi, Shabnam Karimifam, Amirhosein Karimi, Farahnaz Pournavvab

Abstract:

Researches have emphasis on the important role of psychosocial support and appropriate interventions for individuals that involved in serious physical and psychological problems . Patients with AIDS are often discussed in studies, but sometimes the psychological conditions of the people who live with them are ignored. In the present study, while paying attention to the spouses of AIDS patients, the role of supportive interventions has been investigated. the other word , Researchers Show that life skills training causes significant improvement in the mean scores of mothers physical health , mental health, social relationship and ultimately quality of life in the experimental group . The purpose of this study is determine of mental health of Twenty-one wives of patients with HIV+ In Shiraz ( city in sought of Iran) and effects of life skills on promotion of their mental health . Sampling was systematic randomize . These women were selected and invited to the training program based on their husbands' file numbers, who were selected to the counseling center for people with AIDS. first , they filled out GHQ questionnaires . Then , the life skills training for 8 sessions were taught for these women . Results indicated that Psychological condition of wife of patients with HIV+ was not appropriate . Scores of most them were above of cut of point of questionnaires .T test was done . worse scores were Assigned to anxiety and weakness in social functions . In the other hand , life skills have been effective significantly only in social functions of women . Scores of research’s participants in anxiety , depression and total test score were enhanced , but have not been significant . In the main of article , researchers have discussed why life skills training does not have much effect on some emotional problems .Despite the fact that life skills training had a positive effect on these spouses, but due to the stress of women with AIDS spouses, life skills training did not show much effectiveness, and for outstanding effects, there is a need for individual psychological treatments and broader social support.

Keywords: Hiv, aids, social suport, life skills

Procedia PDF Downloads 68
8079 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State

Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere

Abstract:

In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.

Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices

Procedia PDF Downloads 413
8078 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 64
8077 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 224
8076 Preparedness for Nurses to Adopt the Implementation of Inpatient Medication Order Entry (IPMOE) System at United Christian Hospital (UCH) in Hong Kong

Authors: Yiu K. C. Jacky, Tang S. K. Eric, W. Y. Tsang, C. Y. Li, C. K. Leung

Abstract:

Objectives : (1) To enhance the competence of nurses on using IPMOE for drug administration; (2) To ensure the transition on implementation of IPMOE in safer and smooth way hospital-wide. Methodology: (1) Well-structured Governance: To make provision for IPMOE implementation, multidisciplinary governance structure at Corporate and Local levels are well established. (2) Staff Engagement: A series of staff engagement events were conducted including Staff Forum, IPMOE Hospital Visit, Kick-off Ceremony and establishment of IPMOE Webpage for familiarizing the forthcoming implementation with frontline staff. (3) Well-organized training program: from Workshop to Workplace Two different IPMOE training programs were tailor-made which aimed at introducing the core features of administration module. Fifty-five identical training classes and six train-the-trainer workshops were organized at 2-3Q 2015. Lending Scheme on IPMOE hardware for hands-on practicing was launched and further extended the training from workshop to workplace. (4) Standard Guidelines and Workflow: the related workflow and guidelines are developed which facilitates users to acquire the competence towards IPMOE and fully familiarize with the standardized contingency plan. (5) Facilities and Equipment: The installations of IPMOE hardware were promptly arranged for rollout. Besides, IPMOE training venue was well-established for staff training. (6) Risk Management Strategy: UCH Medication Safety Forum is organized in December 2015 for sharing “Tricks & Tips” on IPMOE which further disseminate at webpage for arousal of medication safety. Hospital-wide annual audit on drug administration was planned to figure out the compliance and deliberate the rooms for improvement. Results: Through the comprehensive training plan, over 1,000 UCH nurses attended the training program with positive feedback. They agreed that their competence on using IPMOE was enhanced. By the end of November 2015, 28 wards (over 1,000 Inpatient-bed) involving departments of M&G, SUR, O&T and O&G have been successfully rolled out IPMOE in 5-month. A smooth and safe transition of implementation of IPMOE was achieved. Eventually, we all get prepared for embedding IPMOE into daily nursing and work altogether for medication safety at UCH.

Keywords: drug administration, inpatient medication order entry system, medication safety, nursing informatics

Procedia PDF Downloads 341
8075 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 92
8074 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 336
8073 Is Presence of Psychotic Features Themselves Carry a Risk for Metabolic Syndrome?

Authors: Rady A., Elsheshai A., Elsawy M., Nagui R.

Abstract:

Background and Aim: Metabolic syndrome affect around 20% of general population , authors have incriminated antipsychotics as serious risk factor that may provoke such derangement. The aim of our study is to assess metabolic syndrome in patients presenting psychotic features (delusions and hallucinations) whether schizophrenia or mood disorder and compare results in terms of drug naïf, on medication and healthy control. Subjects and Methods: The study recruited 40 schizophrenic patients, half of them drug naïf and the other half on antipsychotics, 40 patients with mood disorder with psychotic features, half of them drug naïf and the other half on medication, 20 healthy control. Exclusion criteria were put in order to exclude patients having already endocrine or metabolic disorders that my interfere with results obtain to minimize confusion bias. Metabolic syndrome assessed by measuring parameters including weight, body mass index, waist circumference, triglyceride level, HDL, fasting glucose, fasting insulin and insulin resistance Results: No difference was found when comparing drug naïf to those on medication in both schizophrenic and psychotic mood disorder arms, schizophrenic patients whether on medication or drug naïf should difference with control group for fasting glucose, schizophrenic patients on medication also showed difference in insulin resistance compared to control group. On the other hand, patients with psychotic mood disorder whether drug naïf or on medication showed difference from control group for fasting insulin level. Those on medication also differed from control for insulin resistance Conclusion: Our study didn’t reveal difference in metabolic syndrome among patients with psychotic features whether on medication or drug naïf. Only patients with Psychotic features on medication showed insulin resistance. Schizophrenic patients drug naïf or on medication tend to show higher fasting glucose while psychotic mood disorder whether drug naïf or on medication tend to show higher fasting insulin. This study suggest that presence of psychotic features themselves regardless being on medication or not carries a risk for insulin resistance and metabolic syndrome. Limitation: This study is limited by number of participants and larger numbers in future studies should be included in order to extrapolate results. Cohort longitudinal studies are needed in order to evaluate such hypothesis.

Keywords: schizophrenia, metabolic syndrome, psychosis, insulin, resistance

Procedia PDF Downloads 534
8072 Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon

Authors: Jinrui Zhang, Tianlong Yang, Ying Pan

Abstract:

Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability.

Keywords: CO₂ emission reduction, methane, photocatalytic DRM, resistance to carbon deposition, syngas

Procedia PDF Downloads 113
8071 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry

Authors: John M. Ikome

Abstract:

In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.

Keywords: scheduling, heuristics, branch, integrated

Procedia PDF Downloads 407
8070 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 357
8069 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator

Authors: Victoria L. Chester, Usha Kuruganti

Abstract:

The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.

Keywords: EMG, forestry, human factors, wrist biomechanics

Procedia PDF Downloads 141
8068 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 324
8067 Electromyography Analysis during Walking and Seated Stepping in the Elderly

Authors: P. Y. Chiang, Y. H. Chen, Y. J. Lin, C. C. Chang, W. C. Hsu

Abstract:

The number of the elderly in the world population and the rate of falls in this increasing numbers of older people are increasing. Decreasing muscle strength and an increasing risk of falling are associated with the ageing process. Because the effects of seated stepping training on the walking performance in the elderly remain unclear, the main purpose of the proposed study is to perform electromyography analysis during walking and seated stepping in the elderly. Four surface EMG electrodes were sticked on the surface of lower limbs muscles, including vastus lateralis (VL), and gastrocnemius (GT) of both sides. Before test, maximal voluntary contraction (MVC) of the respective muscle was obtained using manual muscle testing. The analog raw data of EMG signals were digitized with a sampling frequency of 2000 Hz. The signals were fully rectified and the linear envelope were calculated. Stepping motion cycle was separated into two phases by stepping timing (ST) and pedal return timing (PRT). ST refer to the time when the pedal marker reached the highest height, representing the contra-lateral leg was going to release the pedal. PRT refer to the time when the pedal marker reached the lowest height, representing the contra-lateral leg was going to step the pedal. We assumed that ST acted the same role in initial contact during walking, and PRT for toe-off. The period from ST to next PRT was called pushing phase (PP), during which the leg would start to step with resistance, and we compare this phase with the stance phase in level walking. The period from PRT to next ST was called returning phase (RP), during which leg would not have any resistance in this phase, and we compare this phase with the swing phase in level walking. VL and Gastro muscular activation had similar patterns in both side. The ability may transfer to those needed during loading response, mid-stance and terminal swing phase. User needed to make more effort in stepping compared with walking with similar timing; thus the strengthening of the VL and Gastro may be helpful to improve the walking endurance and efficiency for the elderly.

Keywords: elderly, electromyography, seated stepping, walking

Procedia PDF Downloads 219
8066 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 350
8065 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 556
8064 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 127
8063 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 439