Search results for: cardiovascular toxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1544

Search results for: cardiovascular toxicity

134 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 155
133 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 241
132 Effect of Copper Complexes on Human Colon Carcinoma Cell Line and Human Breast Carcinoma Cell Line

Authors: Katarína Koňariková, Georgios A. Perdikaris, Lucia Andrezálová, Zdeňka Ďuračková, Lucia Laubertová, Helena Gbelcová, Ingrid Žitňanová

Abstract:

Introduction: The continuous demand for new anti-cancer drugs has stimulated chemotherapeutic research based on the use of essential metalloelements with the aim to develop potential drugs with lower toxicity and higher antiproliferative activity against tumors. Copper(II) and its complexes play an important role as suitable species for antiproliferative tests. Objectives: The central objective of the current study was to investigate the potential in vitro anti-proliferative effects of N-salicylidene-L-glutamato copper (II) complexes and molecular mechanism of apoptosis induced by tested complexes. In our project we tested N-salicylidene-L-glutamato copper (II) complexes ZK1 - [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK0 - ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O); MK1 - [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol); MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] at concentration range 0.001-100 µmol/L against human colon carcinoma cell line HT-29 and human breast carcinoma cell line MCF-7. Methods: Viability was assessed by direct counting of 0.4% trypan blue dye-excluding cells after 24, 48 and 72 hour cultivations with or without copper complex and by MTT assay. To analyze the type of cell death and its mechanism induced by our copper complex we used different methods. To distinguish apoptosis from necrosis we used electrophoretic analysis, to study the activity of caspases 8 and 9 – luminometric analysis and caspase activity 3 colorimetric assay. Results: The observed anti-proliferative effect of the copper complexes appeared to be dose-, time- and cell line- dependent. Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) than to ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)). Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex than human breast carcinoma cells MCF-7. IC50 decreased with time of incubation (24, 48 and 72h) for HT-29, but increased for MCF-7. By electrophoresis we found apoptotic cell death induced by our copper complexes in HT-29 at concentrations 1, 10, 50 and 100 µmol/L after 48h (ZK1) and 72h (MK0, MK1) and in MCF-7 we did not find apoptosis. We also studied molecular mechanism of apoptosis in HT-29 induced by copper complexes. We found active caspase 9 in HT-29 after ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)) influence and active caspase 8 after MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) influence. Conclusion: Our copper complexes showed cytotoxic activities against human colon carcinoma cells HT-29 and breast cancer cell line MCF-7 in vitro. Apoptosis was activated by mitochondrial pathway (intrinsic pathway) in case of ZK1 [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK1 [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol) and MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] copper complexes and by death receptors (extrinsic pathway) in case of MK0 [Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O copper complex in HT-29.

Keywords: apoptosis, copper complex, cancer, carcinoma cell line

Procedia PDF Downloads 280
131 Gastro-Protective Actions of Melatonin and Murraya koenigii Leaf Extract Combination in Piroxicam Treated Male Wistar Rats

Authors: Syed Benazir Firdaus, Debosree Ghosh, Aindrila Chattyopadhyay, Kuladip Jana, Debasish Bandyopadhyay

Abstract:

Gastro-toxic effect of piroxicam, a classical non-steroidal anti-inflammatory drug (NSAID), has restricted its use in arthritis and similar diseases. The present study aims to find if a combination of melatonin and Murraya koenigii leaf extract therapy can protect against piroxicam induced ulcerative damage in rats. For this study, rats were divided into four groups namely control group where rats were orally administered distilled water, only combination treated group, piroxicam treated group and combination pre-administered piroxicam treated group. Each group of rats consisted of six animals. Melatonin at a dose of 20mg/kg body weight and antioxidant rich Murraya koenigii leaf extract at a dose of 50 mg /kg body weight were successively administered at 30 minutes interval one hour before oral administration of piroxicam at a dose of 30 mg/kg body weight to Wistar rats in the combination pre-administered piroxicam treated group. The rats of the animal group which was only combination treated were administered both the drugs respectively without piroxicam treatment whereas the piroxicam treated animal group was administered only piroxicam at 30mg/kg body weight without any pre-treatment with the combination. Macroscopic examination along with histo-pathological study of gastric tissue using haemotoxylin-eosin staining and alcian blue dye staining showed protection of the gastric mucosa in the combination pre-administered piroxicam treated group. Determination of adherent mucus content biochemically and collagen content through Image J analysis of picro-sirius stained sections of rat gastric tissue also revealed protective effects of the combination in piroxicam mediated toxicity. Gelatinolytic activity of piroxicam was significantly reduced by pre-administration of the drugs which was well exhibited by the gelatin zymography study of the rat gastric tissue. Mean ulcer index determined from macroscopic study of rat stomach reduced to a minimum (0±0.00; Mean ± Standard error of mean and number of animals in the group=6) indicating the absence of ulcer spots on pre-treatment of rats with the combination. Gastro-friendly prostaglandin (PGE2) which otherwise gets depleted on piroxicam treatment was also well protected when the combination was pre-administered in the rats prior to piroxicam treatment. The requirement of the individual drugs in low doses in this combinatorial therapeutic approach will possibly minimize the cost of therapy as well as it will eliminate the possibility of any pro-oxidant side effects on the use of high doses of antioxidants. Beneficial activity of this combination therapy in the rat model raises the possibility that similar protective actions might be also observed if it is adopted by patients consuming NSAIDs like piroxicam. However, the introduction of any such therapeutic approach is subject to future studies in human.

Keywords: gastro-protective action, melatonin, Murraya koenigii leaf extract, piroxicam

Procedia PDF Downloads 293
130 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 345
129 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 114
128 Evaluation of Trabectedin Safety and Effectiveness at a Tertiary Cancer Center at Qatar: A Retrospective Analysis

Authors: Nabil Omar, Farah Jibril, Oraib Amjad

Abstract:

Purpose: Trabecatine is a is a potent marine-derived antineoplastic drug which binds to the minor groove of the DNA, bending DNA towards the major groove resulting in a changed conformation that interferes with several DNA transcription factors, repair pathways and cell proliferation. Trabectedin was approved by the European Medicines Agency (EMA; London, UK) for the treatment of adult patients with advanced stage soft tissue sarcomas in whom treatment with anthracyclines and ifosfamide has failed, or for those who are not candidates for these therapies. The recommended dosing regimen is 1.5 mg/m2 IV over 24 hours every 3 weeks. The purpose of this study was to comprehensively review available data on the safety and efficacy of trabectedin used as indicated for patients at a Tertiary Cancer Center at Qatar. Methods: A medication administration report generated in the electronic health record identified all patients who received trabectedin between November 1, 2015 and November 1, 2017. This retrospective chart review evaluated the indication of trabectedin use, compliance to administration protocol and the recommended monitoring parameters, number of patients improved on the drug and continued treatment, number of patients discontinued treatment due to side-effects and the reported side effects. Progress and discharged notes were utilized to report experienced side effects during trabectedin therapy. A total of 3 patients were reviewed. Results: Total of 2 out of 3 patients who received trabectedin were receiving it for non-FDA and non-EMA, approved indications; metastatic rhabdomyosarcoma and ovarian cancer stage IV with poor prognosis. And only one patient received it as indicated for leiomyosarcoma of left ureter with metastases to liver, lungs and bone. None of the patients has continued the therapy due to development of serious side effects. One patient had stopped the medication after one cycle due to disease progression and transient hepatic toxicity, the other one had disease progression and developed 12 % reduction in LVEF after 12 cycles of trabectedin, and the third patient deceased, had disease progression on trabectedin after the 10th cycle that was received through peripheral line which resulted in developing extravasation and left arm cellulitis requiring debridement. Regarding monitoring parameters, at baseline the three patients had ECHO, and Creatine Phosphokinase (CPK) but it was not monitored during treatment as recommended. Conclusion: Utilizing this medication as indicated with performing the appropriate monitoring parameters as recommended can benefit patients who are receiving it. It is important to reinforce the intravenous administration via central intravenous line, the re-assessment of left ventricular ejection fraction (LVEF) by echocardiogram or multigated acquisition (MUGA) scan at 2- to 3-month intervals thereafter until therapy is discontinued, and CPK and LFTs levels prior to each administration of trabectedin.

Keywords: trabectedin, drug-use evaluation, safety, effectiveness, adverse drug reaction, monitoring

Procedia PDF Downloads 118
127 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits

Authors: Bryan Low

Abstract:

In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.

Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling

Procedia PDF Downloads 54
126 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method

Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov

Abstract:

The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.

Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection

Procedia PDF Downloads 196
125 Basic Life Support Training in Rural Uganda: A Mixed Methods Study of Training and Attitudes towards Resuscitation

Authors: William Gallagher, Harriet Bothwell, Lowri Evans, Kevin Jones

Abstract:

Background: Worldwide, a third of adult deaths are caused by cardiovascular disease, a high proportion occurring in the developing world. Contributing to these poor outcomes are suboptimal assessments, treatments and monitoring of the acutely unwell patient. Successful training in trauma and neonates is recognised in the developing world but there is little literature supporting adult resuscitation. As far as the authors are aware no literature has been published on resuscitation training in Uganda since 2000 when a resuscitation training officer ran sessions in neonatal and paediatric resuscitation. The aim of this project was to offer training in Basic Life Support ( BLS) to staff and healthcare students based at Villa Maria Hospital in the Kalungu District, Central Uganda. This project was undertaken as a student selected component (SSC) offered by Swindon Academy, based at the Great Western Hospital, to medical students in their fourth year of the undergraduate programme. Methods: Semi-structured, informal interviews and focus groups were conducted with different clinicians in the hospital. These interviews were designed to focus on the level of training and understanding of BLS. A training session was devised which focused on BLS (excluding the use of an automatic external defribrillator) involving pre and post-training questionnaires and clinical assessments. Three training sessions were run for different cohorts: a pilot session for 5 Ugandan medical students, a second session for a group of 8 nursing and midwifery students and finally, a third was devised for physicians. The data collected was analysed in excel. Paired T-Tests determined statistical significance between pre and post-test scores and confidence before and after the sessions. Average clinical skill assessment scores were converted to percentages based on the area of BLS being assessed. Results: 27 participants were included in the analysis. 14 received ‘small group training’ whilst 13 received’ large group training’ 88% of all participants had received some form of resuscitation training. Of these, 46% had received theory training, 27% practical training and only 15% received both. 12% had received no training. On average, all participants demonstrated a significant increase of 5.3 in self-assessed confidence (p <0.05). On average, all participants thought the session was very useful. Analysis of qualitative date from clinician interviews in ongoing but identified themes identified include rescue breaths being considered the most important aspect resuscitation and doubts of a ‘good’ outcome from resuscitation. Conclusions: The results of this small study reflect the need for regular formal training in BLS in low resource settings. The active engagement and positive opinions concerning the utility of the training are promising as well as the evidence of improvement in knowledge.

Keywords: basic life support, education, resuscitation, sub-Saharan Africa, training, Uganda

Procedia PDF Downloads 123
124 Enhanced Physiological Response of Blood Pressure and Improved Performance in Successive Divided Attention Test Seen with Classical Instrumental Background Music Compared to Controls

Authors: Shantala Herlekar

Abstract:

Introduction: Entrainment effect of music on cardiovascular parameters is well established. Music is being used in the background by medical students while studying. However, does it really help them relax faster and concentrate better? Objectives: This study was done to compare the effects of classical instrumental background music versus no music on blood pressure response over time and on successively performed divided attention test in Indian and Malaysian 1st-year medical students. Method: 60 Indian and 60 Malaysian first year medical students, with an equal number of girls and boys were randomized into two groups i.e music group and control group thus creating four subgroups. Three different forms of Symbol Digit Modality Test (to test concentration ability) were used as a pre-test, during music/control session and post-test. It was assessed using total, correct and error score. Simultaneously, multiple Blood Pressure recordings were taken as pre-test, during 1, 5, 15, 25 minutes during music/control (+SDMT) and post-test. The music group performed the test with classical instrumental background music while the control group performed it in silence. Results were analyzed using students paired t test. p value < 0.05 was taken as statistically significant. A drop in BP recording was indicative of relaxed state and a rise in BP with task performance was indicative of increased arousal. Results: In Symbol Digit Modality Test (SDMT) test, Music group showed significant better results for correct (p = 0.02) and total (p = 0.029) scores during post-test while errors reduced (p = 0.002). Indian music group showed decline in post-test error scores (p = 0.002). Malaysian music group performed significantly better in all categories. Blood pressure response was similar in music and control group with following variations, a drop in BP at 5minutes, being significant in music group (p < 0.001), a steep rise in values till 15minutes (corresponding to SDMT test) also being significant only in music group (p < 0.001) and the Systolic BP readings in controls during post-test were at lower levels compared to music group. On comparing the subgroups, not much difference was noticed in recordings of Indian student’s subgroups while all the paired-t test values in the Malaysian music group were significant. Conclusion: These recordings indicate an increased relaxed state with classical instrumental music and an increased arousal while performing a concentration task. Music used in our study was beneficial to students irrespective of their nationality and preference of music type. It can act as an “active coping” strategy and alleviate stress within a very short period of time, in our study within a span of 5minutes. When used in the background, during task performance, can increase arousal which helps the students perform better. Implications: Music can be used between lectures for a short time to relax the students and help them concentrate better for the subsequent classes, especially for late afternoon sessions.

Keywords: blood pressure, classical instrumental background music, ethnicity, symbol digit modality test

Procedia PDF Downloads 122
123 Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis

Authors: Victor Pena Ribeiro, Caroline Arruda, Jennyfer Andrea Aldana Mejia, Jairo Kenupp Bastos

Abstract:

Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis.

Keywords: amastigote, brown propolis, cytotoxicity, promastigote

Procedia PDF Downloads 142
122 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 240
121 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 262
120 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet

Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh

Abstract:

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.

Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.

Procedia PDF Downloads 158
119 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno

Abstract:

Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.

Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel

Procedia PDF Downloads 170
118 Highly Selective Phosgene Free Synthesis of Methylphenylcarbamate from Aniline and Dimethyl Carbonate over Heterogeneous Catalyst

Authors: Nayana T. Nivangune, Vivek V. Ranade, Ashutosh A. Kelkar

Abstract:

Organic carbamates are versatile compounds widely employed as pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics and in the synthesis of polyurethanes. Carbamates can be easily transformed into isocyanates by thermal cracking. Isocyantes are used as precursors for manufacturing agrochemicals, adhesives and polyurethane elastomers. Manufacture of polyurethane foams is a major application of aromatic ioscyanates and in 2007 the global consumption of polyurethane was about 12 million metric tons/year and the average annual growth rate was about 5%. Presently Isocyanates/carbamates are manufactured by phosgene based process. However, because of high toxicity of phoegene and formation of waste products in large quantity; there is a need to develop alternative and safer process for the synthesis of isocyanates/carbamates. Recently many alternative processes have been investigated and carbamate synthesis by methoxycarbonylation of aromatic amines using dimethyl carbonate (DMC) as a green reagent has emerged as promising alternative route. In this reaction methanol is formed as a by-product, which can be converted to DMC either by oxidative carbonylation of methanol or by reacting with urea. Thus, the route based on DMC has a potential to provide atom efficient and safer route for the synthesis of carbamates from DMC and amines. Lot of work is being carried out on the development of catalysts for this reaction and homogeneous zinc salts were found to be good catalysts for the reaction. However, catalyst/product separation is challenging with these catalysts. There are few reports on the use of supported Zn catalysts; however, deactivation of the catalyst is the major problem with these catalysts. We wish to report here methoxycarbonylation of aniline to methylphenylcarbamate (MPC) using amino acid complexes of Zn as highly active and selective catalysts. The catalysts were characterized by XRD, IR, solid state NMR and XPS analysis. Methoxycarbonylation of aniline was carried out at 170 °C using 2.5 wt% of the catalyst to achieve >98% conversion of aniline with 97-99% selectivity to MPC as the product. Formation of N-methylated products in small quantity (1-2%) was also observed. Optimization of the reaction conditions was carried out using zinc-proline complex as the catalyst. Selectivity was strongly dependent on the temperature and aniline:DMC ratio used. At lower aniline:DMC ratio and at higher temperature, selectivity to MPC decreased (85-89% respectively) with the formation of N-methylaniline (NMA), N-methyl methylphenylcarbamate (MMPC) and N,N-dimethyl aniline (NNDMA) as by-products. Best results (98% aniline conversion with 99% selectivity to MPC in 4 h) were observed at 170oC and aniline:DMC ratio of 1:20. Catalyst stability was verified by carrying out recycle experiment. Methoxycarbonylation preceded smoothly with various amine derivatives indicating versatility of the catalyst. The catalyst is inexpensive and can be easily prepared from zinc salt and naturally occurring amino acids. The results are important and provide environmentally benign route for MPC synthesis with high activity and selectivity.

Keywords: aniline, heterogeneous catalyst, methoxycarbonylation, methylphenyl carbamate

Procedia PDF Downloads 257
117 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization

Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.

Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties

Procedia PDF Downloads 108
116 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT

Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi

Abstract:

Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.

Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer

Procedia PDF Downloads 66
115 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 161
114 Leptin Levels in Cord Blood and Their Associations with the Birth of Small, Large and Appropriate for Gestational Age Infants in Southern Sri Lanka

Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha

Abstract:

In recent years childhood obesity has increased to pan-epidemic proportions along with a concomitant increase in obesity-associated morbidity. Birth weight is an important determinant of later adult health, with neonates at both ends of the birth weight spectrum at risk of future health complications. Consequently, infants who are born large for gestational age (LGA) are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. Adipose tissue plays a role in linking events in fetal growth to the subsequent development of adult diseases. In addition to its role as a storage depot for fat, adipose tissue produces and secrets a number of hormones of importance in modulating metabolism and energy homeostasis. Cord blood leptin level has been positively correlated with fetal adiposity at birth. It is established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given body mass index indicating a genetic predisposition in the occurrence of obesity. To our knowledge, studies have never been conducted in Sri Lanka to determine the relationship between adipocytokine profile in cord blood and anthropometric parameters in newborns. Thus, the objective of this study is to establish the above relationship for the Sri Lankan population to implement awareness programs to minimize childhood obesity in the future. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of leptin was measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured. Pearson’s correlation was used to assess the relationship between leptin and anthropometric parameters while the Mann-Whitney U test was used to assess the differences in cord blood leptin levels between small for gestational age (SGA), appropriate for gestational age (AGA) and LGA infants. There was a significant difference (P < 0.05) between the cord blood leptin concentrations of LGA infants (12.67 ng/mL ± 2.34) and AGA infants (7.10 ng/mL ± 0.90). However, a significant difference was not observed between leptin levels of SGA infants (8.86 ng/mL ± 0.70) and AGA infants. In both male and female neonates, umbilical leptin levels showed significant positive correlations (P < 0.05) with birth weight of the newborn, pre-pregnancy maternal weight and pre pregnancy BMI between the infants of large and appropriate for gestational ages. Increased concentrations of leptin levels in the cord blood of large for gestational age infants suggest that they may be involved in regulating fetal growth. Leptin concentration of Sri Lankan population was not significantly deviated from published data of Asian populations. Fetal leptin may be an important predictor of neonatal adiposity; however, interventional studies are required to assess its impact on the possible risk of childhood obesity.

Keywords: appropriate for gestational age, childhood obesity, leptin, anthropometry

Procedia PDF Downloads 164
113 Neutrophil-to-Lymphocyte Ratio: A Predictor of Cardiometabolic Complications in Morbid Obese Girls

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a low-grade inflammatory state. Childhood obesity is a multisystem disease, which is associated with a number of complications as well as potentially negative consequences. Gender is an important universal risk factor for many diseases. Hematological indices differ significantly by gender. This should be considered during the evaluation of obese children. The aim of this study is to detect hematologic indices that differ by gender in morbid obese (MO) children. A total of 134 MO children took part in this study. The parents filled an informed consent form and the approval from the Ethics Committee of Namik Kemal University was obtained. Subjects were divided into two groups based on their genders (64 females aged 10.2±3.1 years and 70 males aged 9.8±2.2 years; p ≥ 0.05). Waist-to-hip as well as head-to-neck ratios and body mass index (BMI) values were calculated. The children, whose WHO BMI-for age and sex percentile values were > 99 percentile, were defined as MO. Hematological parameters [haemoglobin, hematocrit, erythrocyte count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width, leukocyte count, neutrophil %, lymphocyte %, monocyte %, eosinophil %, basophil %, platelet count, platelet distribution width, mean platelet volume] were determined by the automatic hematology analyzer. SPSS was used for statistical analyses. P ≤ 0.05 was the degree for statistical significance. The groups included children having mean±SD value of BMI as 26.9±3.4 kg/m2 for males and 27.7±4.4 kg/m2 for females (p ≥ 0.05). There was no significant difference between ages of females and males (p ≥ 0.05). Males had significantly increased waist-to-hip ratios (0.95±0.08 vs 0.91±0.08; p=0.005) and mean corpuscular hemoglobin concentration values (33.6±0.92 vs 33.1±0.83; p=0.001) compared to those of females. Significantly elevated neutrophil (4.69±1.59 vs 4.02±1.42; p=0.011) and neutrophil-to-lymphocyte ratios (1.70±0.71 vs 1.39±0.48; p=0.004) were detected in females. There was no statistically significant difference between groups in terms of C-reactive protein values (p ≥ 0.05). Adipose tissue plays important roles during the development of obesity and associated diseases such as metabolic syndrom and cardiovascular diseases (CVDs). These diseases may cause changes in complete blood cell count parameters. These alterations are even more important during childhood. Significant gender effects on the changes of neutrophils, one of the white blood cell subsets, were observed. The findings of the study demonstrate the importance of considering gender in clinical studies. The males and females may have distinct leukocyte-trafficking profiles in inflammation. Female children had more circulating neutrophils, which may be the indicator of an increased risk of CVDs, than male children within this age range during the late stage of obesity. In recent years, females represent about half of deaths from CVDs; therefore, our findings may be the indicator of the increasing tendency of this risk in females starting from childhood.

Keywords: children, gender, morbid obesity, neutrophil-to-lymphocyte ratio

Procedia PDF Downloads 259
112 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 44
111 Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents

Authors: L. P. Gomes, G. F. Araújo, Y. M. L. Cordeiro, C. T. Andrade, E. M. Del Aguila, V. M. F. Paschoalin

Abstract:

The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way.

Keywords: antimicrobial agent, chitosan, green production, nanoparticles

Procedia PDF Downloads 308
110 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 139
109 Antioxidant Potential of Sunflower Seed Cake Extract in Stabilization of Soybean Oil

Authors: Ivanor Zardo, Fernanda Walper Da Cunha, Júlia Sarkis, Ligia Damasceno Ferreira Marczak

Abstract:

Lipid oxidation is one of the most important deteriorating processes in oil industry, resulting in the losses of nutritional value of oils as well as changes in color, flavor and other physiological properties. Autoxidation of lipids occurs naturally between molecular oxygen and the unsaturation of fatty acids, forming fat-free radicals, peroxide free radicals and hydroperoxides. In order to avoid the lipid oxidation in vegetable oils, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydro-quinone (TBHQ) are commonly used. However, the use of synthetic antioxidants has been associated with several health side effects and toxicity. The use of natural antioxidants as stabilizers of vegetable oils is being suggested as a sustainable alternative to synthetic antioxidants. The alternative that has been studied is the use of natural extracts obtained mainly from fruits, vegetables and seeds, which have a well-known antioxidant activity related mainly to the presence of phenolic compounds. The sunflower seed cake is rich in phenolic compounds (1 4% of the total mass), being the chlorogenic acid the major constituent. The aim of this study was to evaluate the in vitro application of the phenolic extract obtained from the sunflower seed cake as a retarder of the lipid oxidation reaction in soybean oil and to compare the results with a synthetic antioxidant. For this, the soybean oil, provided from the industry without any addition of antioxidants, was subjected to an accelerated storage test for 17 days at 65 °C. Six samples with different treatments were submitted to the test: control sample, without any addition of antioxidants; 100 ppm of synthetic antioxidant BHT; mixture of 50 ppm of BHT and 50 ppm of phenolic compounds; and 100, 500 and 1200 ppm of phenolic compounds. The phenolic compounds concentration in the extract was expressed in gallic acid equivalents. To evaluate the oxidative changes of the samples, aliquots were collected after 0, 3, 6, 10 and 17 days and analyzed for the peroxide, diene and triene conjugate values. The soybean oil sample initially had a peroxide content of 2.01 ± 0.27 meq of oxygen/kg of oil. On the third day of the treatment, only the samples treated with 100, 500 and 1200 ppm of phenolic compounds showed a considerable oxidation retard compared to the control sample. On the sixth day of the treatment, the samples presented a considerable increase in the peroxide value (higher than 13.57 meq/kg), and the higher the concentration of phenolic compounds, the lower the peroxide value verified. From the tenth day on, the samples had a very high peroxide value (higher than 55.39 meq/kg), where only the sample containing 1200 ppm of phenolic compounds presented significant oxidation retard. The samples containing the phenolic extract were more efficient to avoid the formation of the primary oxidation products, indicating effectiveness to retard the reaction. Similar results were observed for dienes and trienes. Based on the results, phenolic compounds, especially chlorogenic acid (the major phenolic compound of sunflower seed cake), can be considered as a potential partial or even total substitute for synthetic antioxidants.

Keywords: chlorogenic acid, natural antioxidant, vegetables oil deterioration, waste valorization

Procedia PDF Downloads 244
108 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 206
107 Methodological Approach for the Prioritization of Different Micro-Contaminants as Potential River Basin Specific Pollutants in the Upper Tisza River Watershed

Authors: Mihail Simion Beldean-Galea, Virginia Coman, Florina Copaciu, Mihaela Vlassa, Radu Mihaiescu, Adina Croitoru, Viorel Arghius, Modest Gertsiuk, Mikola Gertsiuk

Abstract:

Taking into consideration the huge number of chemicals released into environment compartments a proper environmental risk assessment is difficult to predict due to the gap of legislation and improper toxicological assessment of chemicals compounds. In Romania as well as in many other countries from Europe, the chemical status of the water body is characterized taking into consideration the Water Framework Directive (WFD) and the substances listed in Annex X. This Annex includes 45 substances from different classes of organic compounds and heavy metals for which AA-EQS and MAC-EQS have been established. For other compounds which are not included in Annex X, different methodologies to prioritize chemicals for risk assessment and monitoring has been proposed. These methodologies take into account Predicted No-Effect Concentrations (PNECs) of different classes of chemicals compounds available from existing risk assessments or from read-across models for acute toxicity to the standard test organisms such as Daphnia magna and Selenastrum capricornutum. Our work presents the monitoring results of 30 priority substances including polyaromatic hydrocarbons, pesticides, halogenated compounds, plasticizers and heavy metals and other 34 substances from different classes of pesticides and pharmaceuticals which are not included on the list of priority substances, performed in the Upper Tisza River Watershed from Romania and Ukraine. The obtained monitoring data were used for the establishment of the list of more relevant pollutants in the studied area and to establish the potential river basin specific pollutants. For this purpose, two indicators such as the Frequency of exceedance and Extent of exceedance of Predicted no-Effect Concentration (PNEC) were evaluated. These two indicators are based on maximum environmental concentrations (MECs) of priority substances and for other pollutants is use statistically based averages of obtained measured concentration compared to the lowest PNEC thresholds. From the obtained results it can be concluded that polyaromatic hydrocarbon such as Fluoranthene, Benzo[a]pyrene, Benzo[b]fluorathene, benzo[k]fluoranthene, Benzo(g.h.i)perylene, Indeno(1.2.3-cd)-pyrene, heavy metals such as Cadmium, Lead and Nickel can be considered as river basin specific pollutants, their concentration exceeding the Annual Average EQS concentration. Other compounds such as estrone, estriol, 174-β estradiol, naproxen or some antibiotics (Penicillin G, Tetracycline or Ceftazidime) should be taken into account for a long monitoring, in some cases their concentration exceeding PNEC. Acknowledgements: This work is performed in the frame of NATO SfP Programme, Project no. 984440.

Keywords: prioritization, river basin specific pollutants, Tisza River, water framework directive

Procedia PDF Downloads 283
106 The Relationship between Body Fat Percent and Metabolic Syndrome Indices in Childhood Morbid Obesity

Authors: Mustafa Metin Donma

Abstract:

Metabolic syndrome (MetS) is characterized by a series of biochemical, physiological and anthropometric indicators and is a life-threatening health problem due to its close association with chronic diseases such as diabetes mellitus, hypertension, cancer and cardiovascular diseases. The syndrome deserves great interest both in adults and children. Central obesity is the indispensable component of MetS. Particularly, children, who are morbidly obese have a great tendency to develop the disease, because they are under the threat in their future lives. Preventive measures at this stage should be considered. For this, investigators seek for an informative scale or an index for the purpose. So far, several, but not many suggestions come into the stage. However, the diagnostic decision is not so easy and may not be complete particularly in the pediatric population. The aim of the study was to develop a MetS index capable of predicting MetS, while children are at the morbid obesity stage. This study was performed on morbid obese (MO) children, which were divided into two groups. Morbid obese children, who do not possess MetS criteria comprised the first group (n=44). The second group was composed of children (n=42) with MetS diagnosis. Parents were informed about the signed consent forms, which are required for the participation of their children in the study. The approval of the study protocol was taken from the institutional ethics committee of Tekirdag Namik Kemal University. Helsinki Declaration was accepted prior to and during the study. Anthropometric measurements including weight, height, waist circumference (WC), hip C, head C, neck C, biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) and blood pressure measurements (systolic (SBP) and diastolic (DBP)) were performed. Body fat percentage (BFP) values were determined by TANITA’s Bioelectrical Impedance Analysis technology. Body mass index and MetS indices were calculated. The equations for MetS index (MetSI) and advanced Donma MetS index (ADMI) were [(INS/FBG)/(HDL-C/TRG)]*100 and MetSI*[(SBP+DBP/Height)], respectively. Descriptive statistics including median values, compare means tests, correlation-regression analysis were performed within the scope of data evaluation using the statistical package program, SPSS. Statistically significant mean differences were determined by a p value smaller than 0.05. Median values for MetSI and ADMI in MO (MetS-) and MO (MetS+) groups were calculated as (25.9 and 36.5) and (74.0 and 106.1), respectively. Corresponding mean±SD values for BFPs were 35.9±7.1 and 38.2±7.7 in groups. Correlation analysis of these two indices with corresponding general BFP values exhibited significant association with ADMI, close to significance with MetSI in MO group. Any significant correlation was found with neither of the indices in MetS group. In conclusion, important associations observed with MetS indices in MO group were quite meaningful. The presence of these associations in MO group was important for showing the tendency towards the development of MetS in MO (MetS-) participants. The other index, ADMI, was more helpful for predictive purpose.

Keywords: body fat percentage, child, index, metabolic syndrome, obesity

Procedia PDF Downloads 47
105 Eosinophils and Platelets: Players of the Game in Morbid Obese Boys with Metabolic Syndrome

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Childhood obesity, which may lead to increased risk for heart diseases in children as well as adults, is one of the most important health problems throughout the world. Prevalences of morbid obesity and metabolic syndrome (MetS) are being increased during childhood age group. MetS is a cluster of metabolic and vascular abnormalities including hypercoagulability and an increased risk of cardiovascular diseases (CVDs). There are also some relations between some components of MetS and leukocytes. The aim of this study is to investigate complete blood cell count parameters that differ between morbidly obese boys and girls with MetS diagnosis. A total of 117 morbid obese children with MetS consulted to Department of Pediatrics in Faculty of Medicine Hospital at Namik Kemal University were included into the scope of the study. The study population was classified based upon their genders (60 girls and 57 boys). Their heights and weights were measured and body mass index (BMI) values were calculated. WHO BMI-for age and sex percentiles were used. The values above 99 percentile were defined as morbid obesity. Anthropometric measurements were performed. Waist-to-hip and head-to-neck ratios as well as homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Hematological variables were measured. Statistical analyses were performed using SPSS. The degree for statistical significance was p ≤ 0.05. There was no statistically significant difference between the ages (11.2±2.6 years vs 11.2±3.0 years) and BMIs (28.6±5.2 kg/m2 vs 29.3±5.2 kg/m2) of boys and girls (p ≥ 0.05), respectively. Significantly increased waist-to-hip ratios were obtained for boys (0.94±0.08 vs 0.91±0.06; p=0.023). Significantly elevated values of hemoglobin (13.55±0.98 vs 13.06±0.82; p=0.004), mean corpuscular hemoglobin concentration (33.79±0.91 vs 33.21±1.14; p=0.003), eosinophils (0.300±0.253 vs 0.196±0.197; p=0.014), and platelet (347.1±81.7 vs 319.0±65.9; p=0.042) were detected for boys. There was no statistically significant difference between the groups in terms of neutrophil/lymphocyte ratios as well as HOMA-IR values (p ≥ 0.05). Statistically significant gender-based differences were found for hemoglobin as well as mean corpuscular hemoglobin concentration and hence, separate reference intervals for two genders should be considered for these parameters. Eosinophils may contribute to the development of thrombus in acute coronary syndrome. Eosinophils are also known to make an important contribution to mechanisms related to thrombosis pathogenesis in acute myocardial infarction. Increased platelet activity is observed in patients with MetS and these individuals are more susceptible to CVDs. In our study, elevated platelets described as dominant contributors to hypercoagulability and elevated eosinophil counts suggested to be related to the development of CVDs observed in boys may be the early indicators of the future cardiometabolic complications in this gender.

Keywords: children, complete blood count, gender, metabolic syndrome

Procedia PDF Downloads 201