Search results for: Taguchi parameter design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13834

Search results for: Taguchi parameter design

12424 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process

Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan

Abstract:

The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.

Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders

Procedia PDF Downloads 385
12423 Future Metro Station: Remodeling Underground Environment Based on Experience Scenarios and IoT Technology

Authors: Joo Min Kim, Dongyoun Shin

Abstract:

The project Future Station (FS) seek for a deeper understanding of metro station. The main idea of the project is enhancing the underground environment by combining new architectural design with IoT technology. This research shows the understanding of the metro environment giving references regarding traditional design approaches and IoT combined space design. Based on the analysis, this research presents design alternatives in two metro stations those are chosen for a testbed. It also presents how the FS platform giving a response to travelers and deliver the benefit to metro operators. In conclusion, the project describes methods to build future metro service and platform that understand traveler’s intentions and giving appropriate services back for enhancing travel experience. It basically used contemporary technology such as smart sensing grid, big data analysis, smart building, and machine learning technology.

Keywords: future station, digital lifestyle experience, sustainable metro, smart metro, smart city

Procedia PDF Downloads 279
12422 Latest Generation Conducted Electrical Weapon Dart Design: Signature Marking and Removal for the Emergency Medicine Professional

Authors: J. D. Ho, D. M. Dawes, B. Driver

Abstract:

Introduction: TASER Conducted Electrical Weapons (CEWs) are the dominant CEWs in use and have been used in modern police and military operations since the late 1990s as a form of non-lethal weaponry. The 3rd generation of CEWs has been recently introduced and is known as The TASER 7. This new CEW will be replacing current CEW technology and has a new dart design that is important for emergency medical professionals to be familiar with because it requires a different method of removal and will leave a different marking pattern in human tissue than they may have been previously familiar with. features of this new dart design include: higher velocity impact, larger impact surface area, break away dart body segment, dual back-barb retention, newly designed removal process. As the TASER 7 begins to be deployed by the police and military personnel, these new features make it imperative that emergency medical professionals become familiar with the signature markings that this new dart design will make on human tissue and how to remove them. Methods: Multiple observational studies using high speed photography were used to record impact patterns of the new dart design on fresh tissue and also the newly recommended dart removal process. Both animal and human subjects were used to test this dart design prior to production release. Results: Data presented will include dart design overview, flight pattern accuracy, impact analysis, and dart removal example. Tissue photographs will be presented to demonstrate examples of signature TASER 7 dart markings that emergency medical professionals can expect to see. Conclusion: This work will provide the reader with an understanding of this newest generation CEW dart design, its key features, its signature marking pattern that can be expected and a recommendation of how to remove it from human tissue.

Keywords: TASER 7, conducted electrical weapon, dart mark, dart removal

Procedia PDF Downloads 135
12421 Nonlinear Optics of Dirac Fermion Systems

Authors: Vipin Kumar, Girish S. Setlur

Abstract:

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.

Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems

Procedia PDF Downloads 277
12420 Design of Transmit Beamspace and DOA Estimation in MIMO Radar

Authors: S. Ilakkiya, A. Merline

Abstract:

A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.

Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming

Procedia PDF Downloads 493
12419 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 390
12418 Modes of Seeing in Interactive Exhibitions: A Study on How Technology Can Affect the Viewer and Transform the Exhibition Spaces

Authors: Renata P. Lopes

Abstract:

The current art exhibit scenario presents a multitude of visualization features deployed in experiences that instigate a process of art production and design. The exhibition design through multimedia devices - from the audiovisual to the touch screen - has become a medium from which art can be understood and contemplated. Artistic practices articulated, during the modern period, the spectator's perception in the exhibition space, often challenging the architecture of museums and galleries. In turn, the museum institution seeks to respond to the challenge of welcoming the viewer whose experience is mediated by technological artifacts. When the beholder, together with the technology, interacts with the exhibition space, important displacements happen. In this work, we will analyze the migrations of the exhibition space to the digital environment through mobile devices triggered by the viewer. Based not on technological determinism, but on the conditions of the appearance of this spectator, this work is developed, with the aim of apprehending the way in which technology demarcates the differences between what the spectator was and what becomes in the contemporary atmosphere of the museums and galleries. These notions, we believe, will contribute to the formation of an exhibition design space in conformity with this participant.

Keywords: exhibition, museum, exhibition design, digital media

Procedia PDF Downloads 119
12417 Use of Indian Food Mascot Design as an Advertising Tool in Maintaining and Growing the Brand Name

Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabarti

Abstract:

Mascots provide memories to viewers, and numerous promotional campaigns with different appearances, continue to trigger viewers and capture their interest. This study investigates the effect of Indian food mascot designs and influence on enhancing communication; thereby, building long-term brand recognition by the consumers. This paper presents a descriptive approach to Indian food mascot design as an advertising tool, and its research adopts a quantitative methodology. The study confirms that mascots have an ability to communicate a message in an effective manner; all though they are simple in terms of design and fashion trend, they have the capability to build positive reactions.

Keywords: food mascot, brand recognitions, advertising, humour

Procedia PDF Downloads 161
12416 On Constructing a Cubically Convergent Numerical Method for Multiple Roots

Authors: Young Hee Geum

Abstract:

We propose the numerical method defined by xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.

Keywords: asymptotic error constant, iterative method, multiple root, root-finding

Procedia PDF Downloads 202
12415 A Simple, Precise and Cost Effective PTFE Container Design Capable to Work in Domestic Microwave Oven

Authors: Mehrdad Gholami, Shima Behkami, Sharifuddin B. Md. Zain, Firdaus A. B. Kamaruddin

Abstract:

Starting from the first application of a microwave oven for sample preparation in 1975 for the purpose of wet ashing of biological samples using a domestic microwave oven, many microwave-assisted dissolution vessels have been developed. The advanced vessels are armed with special safety valve that release the excess of pressure while the vessels are in critical conditions due to applying high power of microwave. Nevertheless, this releasing of pressure may cause lose of volatile elements. In this study Teflon bottles are designed with relatively thicker wall compared to commercial ones and a silicone based polymer was used to prepare an O-ring which plays the role of safety valve. In this design, eight vessels are located in an ABS holder to keep them stable and safe. The advantage of these vessels is that they need only 2 mL of HNO3 and 1mL H2O2 to digest different environmental samples, namely, sludge, apple leave, peach leave, spinach leave and tomato leave. In order to investigate the performance of this design an ICP-MS instrument was applied for multi elemental analysis of 20 elements on the SRM of above environmental samples both using this design and a commercial microwave digestion design. Very comparable recoveries were obtained from this simple design with the commercial one. Considering the price of ultrapure chemicals and the amount of them which normally is about 8-10 mL, these simple vessels with the procedures that will be discussed in detail are very cost effective and very suitable for environmental studies.

Keywords: inductively coupled plasma mass spectroscopy (ICP-MS), PTFE vessels, Teflon bombs, microwave digestion, trace element

Procedia PDF Downloads 316
12414 On Supporting a Meta-Design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many research have revealed the fact of the complexity of ontology building process that there is a need to have a new approach which addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model in a socio-technical ontology engineering. Principles in the meta-design framework is applied in the construction phases on the ontology. A portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a web semantic application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: socio-technical, metadesign, ontology engineering methodology, semantic web application

Procedia PDF Downloads 420
12413 Modelling the Yield Stress of Magnetorheological Fluids

Authors: Hesam Khajehsaeid, Naeimeh Alagheband

Abstract:

Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.

Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model

Procedia PDF Downloads 158
12412 In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera

Authors: Somdutt Mujwar, Kamal Raj Pardasani

Abstract:

Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism.

Keywords: cholera, drug design, ligand, riboswitch, pharmacophore

Procedia PDF Downloads 327
12411 Using Axiomatic Design for Developing a Framework of Manufacturing Cloud Service Composition in the Equilibrium State

Authors: Ehsan Vaziri Goodarzi, Mahmood Houshmand, Omid Fatahi Valilai, Vahidreza Ghezavati, Shahrooz Bamdad

Abstract:

One important paradigm of industry 4.0 is Cloud Manufacturing (CM). In CM everything is considered as a service, therefore, the CM platform should consider all service provider's capabilities and tries to integrate services in an equilibrium state. This research develops a framework for implementing manufacturing cloud service composition in the equilibrium state. The developed framework using well-known tools called axiomatic design (AD) and game theory. The research has investigated the factors for forming equilibrium for measures of the manufacturing cloud service composition. Functional requirements (FRs) represent the measures of manufacturing cloud service composition in the equilibrium state. These FRs satisfied by related Design Parameters (DPs). The FRs and DPs are defined by considering the game theory, QoS, consumer needs, parallel and cooperative services. Ultimately, four FRs and DPs represent the framework. To insure the validity of the framework, the authors have used the first AD’s independent axiom.

Keywords: axiomatic design, manufacturing cloud service composition, cloud manufacturing, industry 4.0

Procedia PDF Downloads 157
12410 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 23
12409 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 372
12408 The Ecological Urbanism as an Oppurtunity to Solve City Problem

Authors: Fairuz A. Ulinnuha, Bimo K. Fuadi

Abstract:

The world’s population continues to grow resulting in steady migration from rural to urban areas. Increased numbers of people and cities hand in hand with greater exploitation of world’s resource. Every year, more cities are feeling the devastating of this impact of this situation. During the 1970’s, some of eco-concept were applied to urban settings, one of them is Ecological Cities. A non-profit organization, Urban Ecology, was founded in California in 1975 to 'rebuild cities in balance with nature'. Efforts to synthesize ecological and urban planning approaches were slowed somewhat in the 1980s, but useful refinements were made. Consideration of social impact acknowledges that the ecological design is not just about ecology itself. It is also about questioning and redefining our understanding of the ecology. When ecologist did recognize the existence of cities, they were usually concerned with resource flows. One popular approach was to study the flow and transformation of energy through urban ecosystem. This research method is descriptive method, following LEED Certification which is the international standard of the sustainable building, is more widely applied. But there remains problem that the moral imperative of sustainability and by implication of sustainable design, tends to supplant the disciplinary contribution. Sustainable design is not always seen as design excellence or design innovation. This can provoke the skepticism and cause the tension those who promote disciplinary knowledge and those who push for sustainability. The challenges of rapid urbanization and limited of global resources has become more pressing. So, there is a need to find an alternative design approaches. The urban, as the site of complex relation (economy, political, social, cultural), need a complex problem solving that can solve current and future condition. The aim of this study is to discussed about conjoining of ecology such as public park and sustainable design.

Keywords: ecology, cities, urban, sustainability

Procedia PDF Downloads 110
12407 Environment and Water in the Conceptions of a Sustainable Architecture

Authors: Carlos H. Ferreira, Joana R. Pereira

Abstract:

In recent decades, calls for sustainable architecture based on environmental policies have been frequent. Despite a vast number of documents, technical procedures, and publications involving these themes, conceptions, and even architectural practice are often distanced from critical and methodological reflection on the relationship between environment and architecture. Among the various issues that we could consider in this relationship, we highlight in this article the relevance of water in the environment and in the architectural design. From documentary references and works carried out, we seek contributions to a better systematization and framing of water in architectural thinking. We distinguish, on the one hand, more conceptual issues that involve the environmental relationship of water, involving its cycle, relevance in the landscape, and infrastructural commitments. On the other hand, we highlight a more operative component, focusing on the place of water in the design process, from its perception in space-shape dimensions to more specific technical requirements that involve the interdisciplinary boundaries of architecture. In both approaches to water in architectural design, we seek to contribute to greater sensitivity and efficiency in the art of designing a more sustainable future.

Keywords: sustainability, environment, water, resilience design

Procedia PDF Downloads 110
12406 The Study of Flood Resilient House in Ebo-Town

Authors: Alagie Salieu Nankey

Abstract:

Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house.

Keywords: flood-resistant, slit, flood hazard zone, pile foundation

Procedia PDF Downloads 5
12405 Reviewers’ Perception of the Studio Jury System: How They View its Value in Architecture and Design Education

Authors: Diane M. Bender

Abstract:

In architecture and design education, students learn and understand their discipline through lecture courses and within studios. A studio is where the instructor works closely with students to help them understand design by doing design work. The final jury is the culmination of the studio learning experience. It’s value and significance are rarely questioned. Students present their work before their peers, instructors, and invited reviewers, known as jurors. These jurors are recognized experts who add a breadth of feedback to students mostly in the form of a verbal critique of the work. Since the design review or jury has been a common element of studio education for centuries, jurors themselves have been instructed in this format. Therefore, they understand its value from both a student and a juror perspective. To better understand how these reviewers see the value of a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines were involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=108) provided written comments about their perceived value of the studio review system. The average respondent was male (64%), between 40-49 years of age, and has attained a master’s degree. Qualitative analysis with thematic coding revealed several themes. Reviewers view the final jury as important because it provides a variety of perspectives from unbiased external practitioners and prepares students for similar presentation challenges they will experience in professional practice. They also see it as a way to validate the assessment and evaluation of students by faculty. In addition, they see a personal benefit for themselves and their firm – the ability to network with fellow jurors, professors, and students (i.e., future colleagues). Respondents also provided additional feedback about the jury system and studio education in general. Typical responses included a desire for earlier engagement with students; a better explanation from the instructor about the project parameters, rubrics/grading, and guidelines for juror involvement; a way to balance giving encouraging feedback versus overly critical comments; and providing training for jurors prior to reviews. While this study focused on the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.

Keywords: assessment, design, jury, studio

Procedia PDF Downloads 46
12404 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 288
12403 Physical Fitness Factors of School Badminton Players in Kandy District

Authors: P. Cinthuja, J. A. O. A Jayakody, M. P. M. Perera, W. V. D. N. Weerarathna, S.E. Nirosha, D. K. D. C. Indeewari, T. Kaethieswaran, S. B. Adikari

Abstract:

The aims of the study was to measure physical fitness parameters of school badminton players in the Kandy district and determine the factors contributing to improve the physical fitness. Height, weight, handgrip was measured and sit and reach test, shoulder flexibility test, standing long jump test, 20m sprint speed test, agility T-test and 20 m multistage shuttle run test were performed on 183 school badminton players. Linear regression and correlation tests were performed using body mass index, practiced duration, age category, level of performance, additional sports involvement as independent variables and physical fitness parameter as dependent variables. Results: The present study showed that the upper body power, upper body strength and endurance and speed depended on body mass index both in male and female school badminton players. Speed, agility, flexibility of shoulders, explosive power of shoulder and aerobic endurance depended on the duration of practiced. Furthermore, involvement in additional sports other than badminton did not enhance the performance of badminton players. But it decreased player’s performance by decreasing agility and speed. Age had an effect on the upper body power, explosive power of lower limb, agility and speed both in both males and females. Conclusions: The performance of badminton players could be enhanced by maintaining a proper body mass index. Badminton specific parameter could be improved by increasing the duration of practiced. Involvement in other sports does not give an added advantage to badminton players to improve their performance.

Keywords: agility, Body Mass Index, endurance, badminton

Procedia PDF Downloads 407
12402 Evolution of Pop Art Pattern on Modern Ao Dai

Authors: Mai Anh Pham Ho

Abstract:

Ao Dai is the traditional dress of Vietnamese women that consists of a long tunic with slits on either side and wide trousers. This is the Vietnamese national costume which most common worn by women in daily life. The Vietnamese men may wear Ao Dai on special occasions like New Year Eve or Wedding Ceremony. Ao Dai is one of the few Vietnamese words that appear in English language dictionaries. Nowadays, there are variations in modern Ao Dai that consist of a short tunic on knee and slim trousers with the other materials like kaki or jeans. This paper aims to apply Pop art pattern on modern Ao Dai through the image of Vietnamese women by modifying the creation process of fashion design. It reflects on how modern culture is involved in Ao Dai and how it affects on fashion design. The research method of this paper is done through surveying the various examples of technological applications to fashion design, then the pop art pattern with the image of Vietnamese women is applied on modern Ao Dai. The results of this paper have shown through the collection of modern Ao Dai with three artworks applied the pop art pattern. In conclusion, the role of fashion technology supports and evolves the traditional value in order to establish the Vietnamese national personality as well as distinguish to other cultural values in the world.

Keywords: pop art pattern, Vietnamese national costume, modern ao dai, fashion design

Procedia PDF Downloads 256
12401 Design Dual Band Band-Pass Filter by Using Stepped Impedance

Authors: Fawzia Al-Sakeer, Hassan Aldeeb

Abstract:

Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area.

Keywords: band pass filter, dual band band-pass filter, ADS, microstrip filter, stepped impedance

Procedia PDF Downloads 45
12400 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair

Authors: Dafna Knani, Sarit S. Sivan

Abstract:

Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.

Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling

Procedia PDF Downloads 52
12399 The Materiality of Noise Barriers: Sustainability Approach

Authors: Mostafa Gabr, Rania Abdul Galil, Nihal Salim

Abstract:

Various interventions are applied in cities with the aim to improve living and acoustic environmental conditions. Noise is one of the most influential and critical factors in the environment that has an effect on the QOL (quality of life) and urban environment. It ranks second among environmental pollution issues according to EEAA. Traffic noise is a major source of noise. Noise barriers are one of the physical techniques in landscape design used to reduce the impact of noise pollution in urban areas. Roadways noise pollution can be best controlled by a noise barrier. The aim of this paper is to consider all facets of sustainability when designing a comfortable acoustic environment in roadways, through different strategies related to planning and the design process. The study focuses on the relation between the design of noise barriers as a landscape noise mitigation installation and their materiality in so far as it influences the sustainability of the open space and the acceptability of users. According to previous studies, design of noise barrier mainly depends on cost as a decisive factor. This study asserts that environmental and socioeconomic costs associated are equally important. Hence, the paper presents a strategy for sustainable soundscape design. It builds a framework focusing on materiality considering the environmental and socioeconomic impact of noise barriers shaping urban open space around the road ways, and the different academic and market positions on noise barrier types and materials. Finally, it concludes with a matrix of the relation between the noise barrier design consideration and the three pillars of sustainability (social, economic and environmental).

Keywords: traffic noise level, acoustic sustainability, noise barrier, noise reduction, noise control, acoustical level

Procedia PDF Downloads 454
12398 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 207
12397 Hydraulic Design of Proposed Ranney Well for Water Supply Scheme in Kurukshetra

Authors: Gaurav Kumar, Baldev Setia

Abstract:

Water is essential for sustenance of life and the ecosystem. Among the various uses of water, the water required for drinking and domestics has the priority over other needs. Water that is required for human consumption must be available in sufficient quantity and should be of good quality. Keeping in view the futuristic needs of water of Kurukshetra town, a durable and cost-effective water supply system with the help of Ranney well has been proposed. This has been proposed on the premise that Brahmsarovar, the largest static water body in the state of Haryana provides sufficient recharge to the groundwater aquifer. In the study, a 30 year design period has been adopted and the water demand up to the year 2050 has been computed. The proposed Ranney well to be constructed in the vicinity of the Brahmsarovar will have a caisson of diameter of 12 m and will be laid at a depth of 30 m below MSL. The laterals, 20 in number, 300 mm in diameter and 15 m in length will be located in two layer separated by 1.5 m. the impact on environment because of the construction and working of the Ranney well is also studied and it has been found that there are no adverse impacts of the proposed scheme. However, the present study is limited to the hydraulics design of the scheme and does not address the structural design of components of Ranney well and the cost involved.

Keywords: drawdown, Ranney well, LPCD, MSL, transmissibility, storativity

Procedia PDF Downloads 271
12396 Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications

Authors: R. Dakir, J. Zbitou, Ahmed Mouhsen, A. Errkik, A. Tajmouati, M. Latrach

Abstract:

The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed.

Keywords: UWB, T-shaped slots, improvement, bandwidth, stub tuning

Procedia PDF Downloads 278
12395 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 570