Search results for: dynamic systems theory
1985 Predicting Ecological Impacts of Sea-Level Change on Coastal Conservation Areas in India
Authors: Mohammad Zafar-ul Islam, Shaily Menon, Xingong Li, A. Townsend Peterson
Abstract:
In addition to the mounting empirical data on direct implications of climate change for natural and human systems, evidence is increasing for other, indirect climate change phenomena such as sea-level rise. Rising sea levels and associated marine intrusion into terrestrial environments are predicted to be among the most serious eventual consequences of climate change. The many complex and interacting factors affecting sea levels create considerable uncertainty in sea-level rise projections: conservative estimates are on the order of 0.5-1.0 m globally, while other estimates are much higher, approaching 6 m. Marine intrusion associated with 1– 6 m sea-level rise will impact species and habitats in coastal ecosystems severely. Examining areas most vulnerable to such impacts may allow design of appropriate adaptation and mitigation strategies. We present an overview of potential effects of 1 and 6 m sea level rise for coastal conservation areas in the Indian Subcontinent. In particular, we examine the projected magnitude of areal losses in relevant biogeographic zones, ecoregions, protected areas (PAs), and Important Bird Areas (IBAs). In addition, we provide a more detailed and quantitative analysis of likely effects of marine intrusion on 22 coastal PAs and IBAs that provide critical habitat for birds in the form of breeding areas, migratory stopover sites, and overwintering habitats. Several coastal PAs and IBAs are predicted to experience higher than 50% losses to marine intrusion. We explore consequences of such inundation levels on species and habitat in these areas.Keywords: sea-level change, coastal inundation, marine intrusion, biogeographic zones, ecoregions, protected areas, important bird areas, adaptation, mitigation
Procedia PDF Downloads 2571984 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 1971983 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling
Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan
Abstract:
Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.Keywords: green infrastructure, wave attenuation, wave modeling, wetland
Procedia PDF Downloads 1321982 Macroinvertebrates of Paravani and Saghamo Lakes, South Georgia
Authors: Bella Japoshvili, Zhanetta Shubitidze, Ani Bikashvili, Sophio Gabelashvili, Marina Gioshvili, Levan Mumladze
Abstract:
Paravani and Saghamo Lakes are oligotrophic lentic systems located in Javakheti plateau (South Georgia) at 2073 m and 1996 m a.s.l. respectively. Javakheti plateau is known as a lakes region as there are located almost 60 small and medium size lakes. Paravani Lake is the biggest lake by its surface area in Georgia, 37 km 2. The Saghamo Lake is smaller and its surface area consists 4.58 km2. These two lakes are connected with Paravani River, because of this the main hydrobiological and ichthyological features are the same. More than 15-30 years were not studied macroinvertebrates of these lakes. Even the existing information is lack and very limited. The aim of our study was to identify main macroinvertebrate groups inhabiting both lakes and to compare obtaining results to existing information. Our investigation was carried out during 2014 and 2015, in 3 seasons of the year, in winter because of severe condition samples were not taken. Kick-net and Petersen grab were used for material collecting, 4 sites from Paravani Lake and 3–from Saghamo Lake were sampled. Collected invertebrates were fixed in ethanol and late taken to the laboratory, where organisms were identified to the lowest taxon possible, usually family. By our results identified 14 taxa for Paravani Lake and 12 taxa for Saghamo Lake. Our results differ from previous information; for Saghamo Lake previously 13 taxa and for Paravani Lake 12 taxa were described. The percentage of the groups also differ from existing information. Our investigation showed that in Paravani Lake most abundant are Apmhipoda, Hydrachnidae, and Hemiptera, in our samples the number of individuals for those 3 taxa was more than thousand, in each. For Saghamo Lake numerous taxon was Amphipoda-36.3%, following by Ephemeroptera-11.37%, Chironomidae-10.5% and Hydrachnidae-7.03% respectively. We also identified the dominant taxon for all studied seasons. Autumn is the period when the diversity of macroinvertebrates are higher in both lakes.Keywords: Georgia, lakes, macroinvertebrates, monitoring
Procedia PDF Downloads 1941981 Multi-Criteria Assessment of Biogas Feedstock
Authors: Rawan Hakawati, Beatrice Smyth, David Rooney, Geoffrey McCullough
Abstract:
Targets have been set in the EU to increase the share of renewable energy consumption to 20% by 2020, but developments have not occurred evenly across the member states. Northern Ireland is almost 90% dependent on imported fossil fuels. With such high energy dependency, Northern Ireland is particularly susceptible to the security of supply issues. Linked to fossil fuels are greenhouse gas emissions, and the EU plans to reduce emissions by 20% by 2020. The use of indigenously produced biomass could reduce both greenhouse gas emissions and external energy dependence. With a wide range of both crop and waste feedstock potentially available in Northern Ireland, anaerobic digestion has been put forward as a possible solution for renewable energy production, waste management, and greenhouse gas reduction. Not all feedstock, however, is the same, and an understanding of feedstock suitability is important for both plant operators and policy makers. The aim of this paper is to investigate biomass suitability for anaerobic digestion in Northern Ireland. It is also important that decisions are based on solid scientific evidence. For this reason, the methodology used is multi-criteria decision matrix analysis which takes multiple criteria into account simultaneously and ranks alternatives accordingly. The model uses the weighted sum method (which follows the Entropy Method to measure uncertainty using probability theory) to decide on weights. The Topsis method is utilized to carry out the mathematical analysis to provide the final scores. Feedstock that is currently available in Northern Ireland was classified into two categories: wastes (manure, sewage sludge and food waste) and energy crops, specifically grass silage. To select the most suitable feedstock, methane yield, feedstock availability, feedstock production cost, biogas production, calorific value, produced kilowatt-hours, dry matter content, and carbon to nitrogen ratio were assessed. The highest weight (0.249) corresponded to production cost reflecting a variation of £41 gate fee to 22£/tonne cost. The weights calculated found that grass silage was the most suitable feedstock. A sensitivity analysis was then conducted to investigate the impact of weights. The analysis used the Pugh Matrix Method which relies upon The Analytical Hierarchy Process and pairwise comparisons to determine a weighting for each criterion. The results showed that the highest weight (0.193) corresponded to biogas production indicating that grass silage and manure are the most suitable feedstock. Introducing co-digestion of two or more substrates can boost the biogas yield due to a synergistic effect induced by the feedstock to favor positive biological interactions. A further benefit of co-digesting manure is that the anaerobic digestion process also acts as a waste management strategy. From the research, it was concluded that energy from agricultural biomass is highly advantageous in Northern Ireland because it would increase the country's production of renewable energy, manage waste production, and would limit the production of greenhouse gases (current contribution from agriculture sector is 26%). Decision-making methods based on scientific evidence aid policy makers in classifying multiple criteria in a logical mathematical manner in order to reach a resolution.Keywords: anaerobic digestion, biomass as feedstock, decision matrix, renewable energy
Procedia PDF Downloads 4621980 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 1371979 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: customer value, Huff's Gravity Model, POS, Retailer
Procedia PDF Downloads 1231978 Energy Storage in the Future of Ethiopia Renewable Electricity Grid System
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy strategy focuses mainly on generating and utilization of Renewable Energy (RE). The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources on the grid from solar and wind energy were only 8 % of the total energy produced. On the other hand, the EEP electricity generation plan in 2030 indicates that 36 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the Energy PLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EPM analysis for two predictive scenarios. The EPM simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Hence, the model’s results are in line with the actual 2016 output. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EPM simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was dominant in all months except in the three rainy months of the year (June, July, and August). Consequently, based on the validated outcomes of EPM indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that; if the excess power is utilized with a storage mechanism that can stabilize the grid system; as a result, the extra RE generated can be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming energy storage system to synchronize with RE potentials that can be generated from RE.Keywords: renewable energy, storage, wind, energyplan
Procedia PDF Downloads 811977 Predictive Modeling of Bridge Conditions Using Random Forest
Authors: Miral Selim, May Haggag, Ibrahim Abotaleb
Abstract:
The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.Keywords: data analysis, random forest, predictive modeling, bridge management
Procedia PDF Downloads 221976 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages
Authors: Ya-Li Tsai
Abstract:
Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization
Procedia PDF Downloads 821975 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya
Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti
Abstract:
Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.Keywords: aquaculture, ecosystem, blue economy, food security
Procedia PDF Downloads 791974 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production
Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna
Abstract:
Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement
Procedia PDF Downloads 661973 EMS Providers' Ability and Willingness to Respond to Bioterrorism
Authors: Ryan Houser
Abstract:
Introduction: Previous studies have found that public health systems within the United States are inadequately prepared for an act of biological terrorism. As the COVID-19 pandemic continues, few studies have evaluated bioterrorism preparedness of Emergency Medical Services, even in the accelerating environment of biothreats. Methods: This study utilized an Internet-based survey to assess the level of preparedness and willingness to respond to a bioterrorism attack and identify factors that predict preparedness and willingness among Nebraska EMS (Emergency Medical Services ) providers. The survey was available for one month in 2021, during which 190 EMS providers responded to the survey. Results: Only 56.8% of providers were able to recognize an illness or injury as potentially resulting from exposure to a CBRN agent. The provider Clinical Competency levels range from a low of 13.6% (ability to initiate patient care within his/her professional scope of practice and arrange for prompt referral appropriate to the identified condition(s)) to a high of 74% (the ability to respond to an emergency within the emergency management system of his/her practice, institution and community). Only 10% of the respondents are both willing and able to effectively function in a bioterror environment. Discussion: In order to effectively prepare for and respond to a bioterrorist attack, all levels of the healthcare system need to have the clinical skills, knowledge, and abilities necessary to treat patients exposed. Policy changes and increased focus on training and drills are needed to ensure a prepared EMS system which is crucial to a resilient state. EMS entities need to be aware of the extent of their available workforce so that the country can be prepared for the increasing threat of bioterrorism or other novel emerging infectious disease outbreaks. A resilient nation relies on a prepared set of EMS providers who are willing to respond to biological terrorism events.Keywords: bioterrorism, prehospital, EMS, disaster, emergency, medicine, preparedness, policy
Procedia PDF Downloads 1561972 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2921971 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas
Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher
Abstract:
Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer
Procedia PDF Downloads 1951970 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics
Authors: A. Abbas, X. Tridon, J. Michelon
Abstract:
In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film
Procedia PDF Downloads 1591969 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health
Procedia PDF Downloads 2421968 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration
Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen
Abstract:
In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.Keywords: administrative law, algorithmic decision-making, decision support, public law
Procedia PDF Downloads 2171967 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education
Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina
Abstract:
Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory
Procedia PDF Downloads 3951966 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers
Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe
Abstract:
The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide
Procedia PDF Downloads 1941965 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques
Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul
Abstract:
In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.Keywords: natural gas, pipeline network, UFG, transmission pack, AGA
Procedia PDF Downloads 951964 Unraveling the Complexity of Postpartum Distress: Examining the Influence of Alexithymia, Social Support, Partners' Support, and Birth Satisfaction on Postpartum Distress among Bulgarian Mothers
Authors: Stela Doncheva
Abstract:
Postpartum distress, encompassing depressive symptoms, obsessions, and anxiety, remains a subject of significant scientific interest due to its prevalence among individuals giving birth. This critical and transformative period presents a multitude of factors that impact women's health. On the one hand, variables such as social support, satisfaction in romantic relationships, shared newborn care, and birth satisfaction directly affect the mental well-being of new mothers. On the other hand, the interplay of hormonal changes, personality characteristics, emotional difficulties, and the profound life adjustments experienced by mothers can profoundly influence their self-esteem and overall physical and emotional well-being. This paper extensively explores the factors of alexithymia, social support, partners' support, and birth satisfaction to gain deeper insights into their impact on postpartum distress. Utilizing a qualitative survey consisting of six self-reflective questionnaires, this study collects valuable data regarding the individual postpartum experiences of Bulgarian mothers. The primary objective is to enrich our understanding of the complex factors involved in the development of postpartum distress during this crucial period. The results shed light on the intricate nature of the problem and highlight the significant influence of bio-psycho-social elements. By contributing to the existing knowledge in the field, this research provides valuable implications for the development of interventions and support systems tailored to the unique needs of mothers in the postpartum period. Ultimately, this study aims to improve the overall well-being of new mothers and promote optimal maternal health during the postpartum journey.Keywords: maternal mental health, postpartum distress, postpartum depression, postnatal mothers
Procedia PDF Downloads 621963 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility
Authors: Yi-Ling Chen, Dung-Ying Lin
Abstract:
In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence
Procedia PDF Downloads 211962 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 951961 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 3961960 The Implications of Population Dynamics on the Environmental Issues: A Case behind Global Change in Climate
Authors: Simiso Fisokuhle Nyandeni
Abstract:
The environment is one of the major components of intergenerational equity under sustainability; however, this component has been facing a lot of issues/crises, which include those that are caused by natural systems due to the actions of humans. Although some of those environmental issues may occur from natural causes, however, climate change effects have shown to increase rapidly due to human behavior, which led to the increase in greenhouse emissions and the over-exploitation of natural resources that maintain an ecological balance in our environment. Based on the recent projections, the growing population tends to outstrip the environmental resources, and as a result, the rapid depletion of natural resources that maintain ecological balance within the environment has resulted in such environmental issues. This paper has adopted desktop analysis to address the main objective, which seeks to address the effects of population dynamics on environmental issues and what needs to be done to maintain the ecological balance between the growing population and the limited resources that are available; thus, the collective data sources were used to justify the literature in order to get adequate results to influence the potential findings. The major findings postulate that there is an ecological imbalance between limited resources available and the growing population; as a result, the environment is taking action against humanity through climate change impacts. Hence findings further outline that in order to prevent such impacts, there should be drastic interventions by the governments (all stakeholders should be involved in decision-making; Governmental or non-governmental institutions, scientists, researchers, etc.) around the world to maintain this ecological balance and also to prioritize the adaptation measures. Therefore, this paper seeks to examine the implications of population dynamics on the environmental issues and what needs to be done in order to maintain this ecological balance between the growing population and environmental resources; hence, this review will be based on the climate change context.Keywords: population dynamics, climate change, environment, sustainability
Procedia PDF Downloads 1321959 The Ameliorative Effects of the Histamine H3 Receptor Antagonist/Inverse Agonist DL77 on MK801-Induced Memory Deficits in Rats
Authors: B. Sadek, N. Khan, Shreesh K. Ojha, Adel Sadeq, D. Lazewska, K. Kiec-Kononowicz
Abstract:
The involvement of Histamine H3 receptors (H3Rs) in memory and the potential role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well established. Therefore, the memory-enhancing effects of the H3R antagonist DL77 on MK801-induced cognitive deficits were evaluated in passive avoidance paradigm (PAP) and novel object recognition (NOR) tasks in adult male rats, applying donepezil (DOZ) as a reference drug. Animals pretreated with acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) were significantly ameliorated in regard to MK801-induced memory deficits in PAP. The ameliorative effect of most effective dose of DL77 (5 mg/kg, i.p.) was abrogated when animals were pretreated with a co-injection with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). Moreover, and in the NOR paradigm, DL77 (5 mg/kg, i.p.) reversed MK801-induced deficits long-term memory (LTM), and the DL77-provided procognitive effect was comparable to that of reference drug DOZ, and was reversed when animals were co-injected with RAMH (10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to alter short-term memory (STM) impairment in NOR test. Furthermore, DL77 (5 mg/kg) failed to induce any alterations of anxiety and locomotor behaviors of animals naive to elevated-plus maze (EPM), indicating that the ameliorative effects observed in PAP or NOR tests were not associated to alterations in emotions or in natural locomotion of tested animals. These results reveal the potential contribution of H3Rs in modulating CNS neurotransmission systems associated with neurodegenerative disorders, e.g., AD.Keywords: histamine H3 receptor, antagonist, learning and memory, Alzheimer's disease, neurodegeneration, passive avoidance paradigm, novel object recognition, behavioral research
Procedia PDF Downloads 1551958 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components
Authors: Andras Dezső, Peter Baumli, George Kaptay
Abstract:
The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.Keywords: phosphorous, steel, segregation, thermo-calc software
Procedia PDF Downloads 6251957 Alignment and Antagonism in Flux: A Diachronic Sentiment Analysis of Attitudes towards the Chinese Mainland in the Hong Kong Press
Authors: William Feng, Qingyu Gao
Abstract:
Despite the extensive discussions about Hong Kong’s sentiments towards the Chinese Mainland since the sovereignty transfer in 1997, there has been no large-scale empirical analysis of the changing attitudes in the mainstream media, which both reflect and shape sentiments in the society. To address this gap, the present study uses an optimised semantic-based automatic sentiment analysis method to examine a corpus of news about China from 1997 to 2020 in three main Chinese-language newspapers in Hong Kong, namely Apple Daily, Ming Pao, and Oriental Daily News. The analysis shows that although the Hong Kong press had a positive emotional tone toward China in general, the overall trend of sentiment was becoming increasingly negative. Meanwhile, the alignment and antagonism toward China have both increased, providing empirical evidence of attitudinal polarisation in the Hong Kong society. Specifically, Apple Daily’s depictions of China have become increasingly negative, though with some positive turns before 2008, whilst Oriental Daily News has consistently expressed more favourable sentiments. Ming Pao maintained an impartial stance toward China through an increased but balanced representation of positive and negative sentiments, with its subjectivity and sentiment intensity growing to an industry-standard level. The results provide new insights into the complexity of sentiments towards China in the Hong Kong press and media attitudes in general in terms of the “us” and “them” positioning by explicating the cross-newspaper and cross-period variations using an enhanced sentiment analysis method which incorporates sentiment-oriented and semantic role analysis techniques.Keywords: media attitude, sentiment analysis, Hong Kong press, one country two systems
Procedia PDF Downloads 1211956 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma
Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren
Abstract:
We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values
Procedia PDF Downloads 154