Search results for: tire pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4106

Search results for: tire pressure

2726 Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana

Authors: Robert Kwame Kpaliba, Dennis Kpakpor Adotey, Yaw Serfor-Armah

Abstract:

Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000).

Keywords: carbonate chemistry, seawater, central atlantic coastline, Ghana, ocean acidification

Procedia PDF Downloads 558
2725 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design

Procedia PDF Downloads 222
2724 Demand-Oriented Supplier Integration in Agile New Product Development Projects

Authors: Guenther Schuh, Stephan Schroeder, Marcel Faulhaber

Abstract:

Companies are facing an increasing pressure to innovate faster, cheaper and more radical in last years, due to shrinking product lifecycles and higher volatility of markets and customer demands. Especially established companies struggle meeting those demands. Thus, many producing companies are adapting their development processes to address this increasing pressure. One approach taken by many companies is the use of agile, highly iterative development processes to reduce development times and costs as well as to increase the fulfilled customer requirements and the realized level of innovation. At the same time decreasing depths of added value and increasing focus on core competencies as well as a growing product complexity result in a high dependency on suppliers and external development partners during the product development. Thus, a successful introduction of agile development methods into the development of physical products requires also a successful integration of the necessary external partners and suppliers into the new processes and procedures and an adaption of the organizational interfaces to external partners according to the new circumstances and requirements of agile development processes. For an effective and efficient product development, the design of customer-supplier-relationships should be demand-oriented. A significant influence on the required design has the characteristics of the procurement object. Examples therefore are the complexity of technical interfaces between supply object and final product or the importance of the supplied component for the major product functionalities. Thus, this paper presents an approach to derive general requirements on the design of supplier integration according to the characteristics of supply objects. First, therefore the most relevant evaluation criteria and characteristics have been identified based on a thorough literature review. Subsequently the resulting requirements on the design of the supplier integration were derived depending on the different possible values of these criteria.

Keywords: iterative development processes, agile new product development, procurement, supplier integration

Procedia PDF Downloads 172
2723 Health Effect of the Central European Diet in Postmenopausal Women with Increased Waist Circumference: A Preliminary Study

Authors: Joanna Bajerska, Agata Chmurzyńska, Agata Muzsik, Patrycja Krzyżanowska, Klaudia Łochocka, Jarosław Walkowiak

Abstract:

The Mediterranean diet (MED) is regarded as beneficial in the therapy of central obesity-associated metabolic abnormalities. However, in the traditional diet of the Central European countries, food items with positive nutritional profiles (rye bread, oats, buckwheat, herrings, linseed and rapeseed oil, berries, apples, plums, root vegetables etc.) are also used. We hypothesized that the Central European Diet (CED) may be comparatively effective in reducing symptoms of central obesity as MED. We tested the health effects of the CED, which is an environmentally friendly regional diet and the traditional MED diet in a group of postmenopausal centrally obese women. A total 58 with a mean age of 60 y (50-70y), body mass index (in kg/m(2)) of 33.4 (22.6-47.3), and waist circumference of 105 cm (87.5-137 cm) were randomly assigned to receive either the diet based on food items commonly used in Central Europe (the CED group; n = 29) or the Mediterranean diet (the MED group; n = 29) for 15 weeks. Body mass and body composition were measured with a Bod Pod (Cosmed, Italy). A non-elastic flexible measuring tape was used to measure waist circumference. Additionally, blood pressure, plasma lipid and glucose levels were assessed with the use of a biochemical analyzer. A total of 50 subjects [86% (CED 83%; MED 90%)] completed the intervention. A high dietary compliance for both described diets was achieved. The mean (±SEM) weight and waist circumference changes were -7.4 ± 0.7 kg; -8.3 ± 0.7 cm and -8.1 ± 0.5 kg; -7.1 ± 0.6 cm for the CED and MED groups, respectively. Moreover, there were no differences between the effectiveness of the diets used in terms of the influence on fat mass, blood pressure, and biochemical parameters. The preliminary data suggest that both described diets may be successfully used for improving central obesity-associated metabolic abnormalities. The project was financed by the National Science Centre awarded based on the number of decision DEC-013/09/B/NZ9/02365

Keywords: central european diet, central obesity, Mediterranean diet, metabolic abnormalities

Procedia PDF Downloads 429
2722 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine

Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta

Abstract:

The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.

Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient

Procedia PDF Downloads 105
2721 Effects of a School-based Mindfulness Intervention on Stress Levels and Emotion Regulation of Adolescent Students Enrolled in an Independent School

Authors: Tracie Catlett

Abstract:

Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students, in particular, experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class, where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences, as they relate to stress and emotions, revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.

Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress

Procedia PDF Downloads 61
2720 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 369
2719 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 147
2718 Job Stress Among the Nurses of the Emergency Department of Selected Saudi Hospital

Authors: Mahmoud Abdel Hameed Shahin

Abstract:

Job demands that are incompatible with an employee's skills, resources, or needs cause unpleasant emotional and physical reactions known as job stress. Nurses offer care in hospital emergency rooms all around the world, and since they operate in such a dynamic and unpredictable setting, they are constantly under pressure. It has been discovered that job stress has harmful impacts on nurses' health as well as their capacity to handle the demands of their jobs. The purpose of this study was to evaluate the level of job stress experienced by the emergency department nurses at King Fahad Specialist Hospital in Buraidah City, Saudi Arabia. In October 2021, a cross-sectional descriptive study was conducted. 80 nurses were conveniently selected for the study, the bulk of them worked at King Fahad Specialist Hospital's emergency department. An electronic questionnaire with a sociodemographic data sheet and a job stress scale was given to the participating nurses after ethical approval was received from the Ministry of Health's representative bodies. Using SPSS Version 26, both descriptive and inferential statistics were employed to analyze and tabulate the acquired data. According to the findings, the factors that contributed to the most job stress in the clinical setting were having an excessive amount of work to do and working under arbitrary deadlines, whereas the factors that contributed to the least stress were receiving the proper recognition or rewards for good work. In the emergency room of King Fahad Specialist Hospital, nurses had a moderate level of stress (M=3.32 ± 0.567/5). Based on their experience, emergency nurses' levels of job stress varied greatly, with nurses with less than a year of experience notably experiencing the lowest levels of job stress. The amount of job stress did not differ significantly based on the emergency nurses' age, nationality, gender, marital status, position, or level of education. The causes and impact of stress on emergency nurses should be identified and alleviated by hospitals through the implementation of interventional programs.

Keywords: emergency nurses, job pressure, Qassim, Saudi Arabia, job stress

Procedia PDF Downloads 189
2717 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita

Abstract:

A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).

Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation

Procedia PDF Downloads 409
2716 Relationship between Iron-Related Parameters and Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Iron is physiologically essential. However, it also participates in the catalysis of free radical formation reactions. Its deficiency is associated with amplified health risks. This trace element establishes some links with another physiological process related to cell death, apoptosis. Both iron deficiency and iron overload are closely associated with apoptosis. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) has the ability to trigger apoptosis and plays a dual role in the physiological versus pathological inflammatory responses of tissues. The aim of this study was to investigate the status of these parameters as well as the associations among them in children with obesity, a low-grade inflammatory state. The study was performed on groups of children with normal body mass index (N-BMI) and obesity. Forty-three children were included in each group. Based upon age- and sex-adjusted BMI percentile tables prepared by World Health Organization, children whose values varied between 85 and 15 were included in N-BMI group. Children whose BMI percentile values were between 99 and 95 comprised obese (OB) group. Institutional ethical committee approval and informed consent forms were taken prior to the study. Anthropometric measurements (weight, height, waist circumference, hip circumference, head circumference, neck circumference) and blood pressure values (systolic blood pressure and diastolic blood pressure) were recorded. Routine biochemical analysis including serum iron, total iron binding capacity (TIBC), transferrin saturation percent (Tf Sat %), and ferritin were performed. Soluble tumor necrosis factor-like weak inducer of apoptosis levels were determined by enzyme-linked immunosorbent assay. Study data was evaluated using appropriate statistical tests performed by the statistical program SPSS. Serum iron levels were 91±34 mcrg/dl and 75±31 mcrg/dl in N-BMI and OB children, respectively. The corresponding values for TIBC, Tf Sat %, ferritin were 265 mcrg/dl vs 299 mcrg/dl, 37.2±19.1 % vs 26.7±14.6 %, and 41±25 ng/ml vs 44±26 ng/ml. in N-BMI and OB groups, sTWEAK concentrations were measured as 351 ng/L and 325 ng/L, respectively (p>0.05). Correlation analysis revealed significant associations between sTWEAK levels and iron related parameters (p<0.05) except ferritin. In conclusion, iron contributes to apoptosis. Children with iron deficiency have decreased apoptosis rate in comparison with that of healthy children. sTWEAK is inducer of apoptosis. Obese children had lower levels of both iron and sTWEAK. Low levels of sTWEAK are associated with several types of cancers and poor survival. Although iron deficiency state was not observed in this study, the correlations detected between decreased sTWEAK and decreased iron as well as Tf Sat % values were valuable findings, which point out decreased apoptosis. This may induce a proinflammatory state, potentially leading to malignancies in the future lives of obese children.

Keywords: apoptosis, children, iron-related parameters, obesity, soluble tumor necrosis factor-like weak inducer of apoptosis

Procedia PDF Downloads 132
2715 Near Ambient Pressure Photoelectron Spectroscopy Studies of CO Oxidation on Spinel Co3O4 Surfaces: Electronic Structure and Mechanistic Aspects of Wet and Dry CO Oxidation

Authors: Ruchi Jain, Chinnakonda S. Gopinath

Abstract:

The CO oxidation is a primary reaction in heterogeneous catalysis due to its potential to overcome the air pollution caused by various reasons. Indeed, in the study of sustainable catalysis, the role played by water is very important. The present work is focused on studying the effect of moisture on the sustainability of Co3O4 NR catalyst for CO oxidation reaction at ambient temperature. The catalytic activity, electronic structure and the mechanistic aspects of spinel Co3O4 nanorod surfaces have been explored in dry and wet atmosphere by near-ambient pressure photoelectron spectroscopic techniques (NAP-PES) with conventional x-ray (Al kα) and ultraviolet sources (He-I).Comparative NAPPES studies have been employed to understand the elucidation of the catalytic reaction pathway and the evolution of various surface species. The presence of water with CO+O2 plummet the catalytic activity due to the change in electronic nature from predominantly oxidic (without water in the feed) to few intermediates covered Co3O4 surface. However, ≥ 375 K Co3O4 surface recovers and regain oxidation activity, at least partially, even in the presence of water. Above mentioned observations are fully supported by the changes observed in the work function of Co3O4 in the presence of wet (H2O+CO+O2) compared to dry (CO+O2) conditions. Various type of surface species, such as CO(ads), carbonate, formate, are found to be on the catalyst surface depending on the reaction conditions. Under dry condition, CO couples with labile O atoms to form CO2, however under wet conditions it also interacts with surface OH groups results in the formation carbonate and formate intermediate. The carbonate acts at reaction inhibitor at room temperature, however proves as active intermediate at temperature 375 K or above. On the other hand, formate has proved to be reaction spectator due to its high stability. The intrinsic role of these species to suppress the oxidation has been demonstrated through a possible reaction mechanism under different reaction conditions.

Keywords: heterogeneous catalysis, surface chemistry, photoelectron spectroscopy, ambient oxidation

Procedia PDF Downloads 255
2714 A Multi-Regional Structural Path Analysis of Virtual Water Flows Caused by Coal Consumption in China

Authors: Cuiyang Feng, Xu Tang, Yi Jin

Abstract:

Coal is the most important primary energy source in China, which exerts a significant influence on the rapid economic growth. However, it makes the water resources to be a constraint on coal industry development, on account of the reverse geographical distribution between coal and water. To ease the pressure on water shortage, the ‘3 Red Lines’ water policies were announced by the Chinese government, and then ‘water for coal’ plan was added to that policies in 2013. This study utilized a structural path analysis (SPA) based on the multi-regional input-output table to quantify the virtual water flows caused by coal consumption in different stages. Results showed that the direct water input (the first stage) was the highest amount in all stages of coal consumption, accounting for approximately 30% of total virtual water content. Regional analysis demonstrated that virtual water trade alleviated the pressure on water use for coal consumption in water shortage areas, but the import of virtual water was not from the areas which are rich in water. Sectoral analysis indicated that the direct inputs from the sectors of ‘production and distribution of electric power and heat power’ and ‘Smelting and pressing of metals’ took up the major virtual water flows, while the sectors of ‘chemical industry’ and ‘manufacture of non-metallic mineral products’ importantly but indirectly consumed the water. With the population and economic growth in China, the water demand-and-supply gap in coal consumption would be more remarkable. In additional to water efficiency improvement measures, the central government should adjust the strategies of the virtual water trade to address local water scarcity issues. Water resource as the main constraints should be highly considered in coal policy to promote the sustainable development of the coal industry.

Keywords: coal consumption, multi-regional input-output model, structural path analysis, virtual water

Procedia PDF Downloads 302
2713 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 138
2712 Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments

Authors: Dawei Shen, Ming Xu, Pengfei Liu

Abstract:

The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher.

Keywords: geosynthetic-reinforced soil integral bridge, nonlinear hysteretic model, numerical analysis, seismic response

Procedia PDF Downloads 463
2711 Efficient Corporate Image as a Strategy for Enhancing Profitability in Hotels

Authors: Lucila T. Magalong

Abstract:

The hotel industry has been using their corporate image and reputation to maintain service quality, customer satisfaction, and customer loyalty and to leverage themselves against competitors and facilitate their growth strategies. With the increasing pressure to perform, hotels have even created hybrid service strategy to fight in the niche markets across pricing and level-off service parameters.

Keywords: corporate image, hotel industry, service quality, customer expectations

Procedia PDF Downloads 465
2710 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis

Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers

Abstract:

SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.

Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality

Procedia PDF Downloads 92
2709 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 310
2708 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 269
2707 Extraction, Recovery and Bioactivities of Chlorogenic Acid from Unripe Green Coffee Cherry Waste of Coffee Processing Industry

Authors: Akkasit Jongjareonrak, Supansa Namchaiya

Abstract:

Unripe green coffee cherry (UGCC) accounting about 5 % of total raw material weight receiving to the coffee bean production process and is, in general, sorting out and dump as waste. The UGCC is known to rich in phenolic compounds such as caffeoylquinic acids, feruloylquinic acids, chlorogenic acid (CGA), etc. CGA is one of the potent bioactive compounds using in the nutraceutical and functional food industry. Therefore, this study aimed at optimization the extraction condition of CGA from UGCC using Accelerated Solvent Extractor (ASE). The ethanol/water mixture at various ethanol concentrations (50, 60 and 70 % (v/v)) was used as an extraction solvent at elevated pressure (10.34 MPa) and temperatures (90, 120 and 150 °C). The recovery yield of UGCC crude extract, total phenolic content, CGA content and some bioactivities of UGCC extract were investigated. Using of ASE at lower temperature with higher ethanol concentration provided higher CGA content in the UGCC crude extract. The maximum CGA content was observed at the ethanol concentration of 70% ethanol and 90 °C. The further purification of UGCC crude extract gave a higher purity of CGA with a purified CGA yield of 4.28 % (w/w, of dried UGCC sample) containing 72.52 % CGA equivalent. The antioxidant activity and antimicrobial activity of purified CGA extract were determined. The purified CGA exhibited the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity at 0.88 mg Trolox equivalent/mg purified CGA sample. The antibacterial activity against Escherichia coli was observed with the minimum inhibitory concentration (MIC) at 3.12 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml. These results suggested that using of high concentration of ethanol and low temperature under elevated pressure of ASE condition could accelerate the extraction of CGA from UGCC. The purified CGA extract could be a promising alternative source of bioactive compound using for nutraceutical and functional food industry.

Keywords: bioactive, chlorogenic acid, coffee, extraction

Procedia PDF Downloads 257
2706 Risk in the South African Sectional Title Industry: An Assurance Perspective

Authors: Leandi Steenkamp

Abstract:

The sectional title industry has been a part of the property landscape in South Africa for almost half a century, and plays a significant role in addressing the housing problem in the country. Stakeholders such as owners and investors in sectional title property are in most cases not directly involved in the management thereof, and place reliance on the audited annual financial statements of bodies corporate for decision-making purposes. Although the industry seems to be highly regulated, the legislation regarding accounting and auditing of sectional title is vague and ambiguous. Furthermore, there are no industry-specific auditing and accounting standards to guide accounting and auditing practitioners in performing their work and industry financial benchmarks are not readily available. In addition, financial pressure on sectional title schemes is often very high due to the fact that some owners exercise unrealistic pressure to keep monthly levies as low as possible. All these factors have an impact on the business risk as well as audit risk of bodies corporate. Very little academic research has been undertaken on the sectional title industry in South Africa from an accounting and auditing perspective. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on uncertainties, ambiguity and confusing aspects in current legislation regarding the audit of a sectional title property that may cause or increase audit and business risk. Secondly, empirical findings of risk-related aspects from the results of interviews with three groups of body corporate role-players will be discussed. The role-players were body corporate trustee chairpersons, body corporate managing agents and accounting and auditing practitioners of bodies corporate. Specific reference will be made to business risk and audit risk. Thirdly, practical recommendations will be made on possibilities of closing the audit expectation gap, and further research opportunities in this regard will be discussed.

Keywords: assurance, audit, audit risk, body corporate, corporate governance, sectional title

Procedia PDF Downloads 267
2705 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 312
2704 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 206
2703 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 139
2702 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: bias, expert, high risk industry, stress.

Procedia PDF Downloads 112
2701 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 110
2700 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 379
2699 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia PDF Downloads 216
2698 Protective Effect of Bexarotene, a Selective RXRα Agonist, against Hypotension Associated with Inflammation and Tissue Injury Linked to Decreased Circulating iNOS Levels in A Rat Model of Septic Shock

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat

Abstract:

We hypothesized that rexinoids such as bexarotene, a selective retinoid X receptor α (RXRα) agonist, may be beneficial for preventing mortality due to inflammation associated with increased expression/activity of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). Therefore, we investigated effects of bexarotene on the changes in circulating protein levels of iNOS (an index for systemic iNOS expression), myeloperoxidase (MPO) (an index for systemic inflammation), and lactate dehydrogenase (LDH) (an index for systemic tissue injury) in LPS-induced systemic inflammation model resulting in septic shock in rats. Rats were injected with saline (4 ml/kg; i.p.), LPS (10 mg/kg; i.p.), dimethylsulphoxide (4 ml/kg, 0.1%; s.c.) at time 0. Mean arterial blood pressure and heart rate were measured using a tail-cuff device. Bexarotene (0.03, 0.1, 0.3, and 1 mg/kg; s.c.) was administered to separate groups of rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and blood was collected for measurement of serum iNOS, MPO, and LDH protein levels. Blood pressure decreased by 31 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. Bexarotene at 0.3 and 1 mg/kg doses caused 20% mortality 4 h after LPS injection. In the LPS-treated rats, serum iNOS, MPO, and LDH protein levels were increased. Bexarotene only at 0.1 mg/kg dose prevented the LPS-induced hypotension and increased in iNOS, MPO, and LDH protein levels. These data are consistent with the view that a decrease in systemic iNOS levels contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia. [This work was financially supported by The Scientific and Technological Research Council of Turkey (SBAG-109S121)].

Keywords: bexarotene, inflammation, iNOS, lipopolisaccharide, RXRa

Procedia PDF Downloads 318
2697 Effect of Plasma Radiation on Keratinocyte Cells Involved in the Wound Healing Process

Authors: B. Fazekas, I. Korolov, K. Kutasi

Abstract:

Plasma medicine, which involves the use of gas discharge plasmas for medical applications is a rapidly growing research field. The use of non-thermal atmospheric pressure plasmas in dermatology to assist tissue regeneration by improving the healing of infected and/or chronic wounds is a promising application. It is believed that plasma can activate cells, which are involved in the wound closure. Non-thermal atmospheric plasmas are rich in chemically active species (such as O and N-atoms, O2(a) molecules) and radiative species such as the NO, N2+ and N2 excited molecules, which dominantly radiate in the 200-500 nm spectral range. In order to understand the effect of plasma species, both of chemically active and radiative species on wound healing process, the interaction of physical plasma with the human skin cells is necessary. In order to clarify the effect of plasma radiation on the wound healing process we treated keratinocyte cells – that are one of the main cell types in human skin epidermis – covered with a layer of phosphate-buffered saline (PBS) with a low power atmospheric pressure plasma. For the generation of such plasma we have applied a plasma needle. Here, the plasma is ignited at the tip of the needle in flowing helium gas in contact with the ambient air. To study the effect of plasma radiation we used a plasma needle configuration, where the plasma species – chemically active radicals and charged species – could not reach the treated cells, but only the radiation. For the comparison purposes, we also irradiated the cells using a UV-B light source (FS20 lamp) with a 20 and 40 mJ cm-2 dose of 312 nm. After treatment the viability and the proliferation of the cells have been examined. The proliferation of cells has been studied with a real time monitoring system called Xcelligence. The results have indicated, that the 20 mJ cm-2 dose did not affect cell viability, whereas the 40 mJ cm-2 dose resulted a decrease in cell viability. The results have shown that the plasma radiation have no quantifiable effect on the cell proliferation as compared to the non-treated cells.

Keywords: UV radiation, non-equilibrium gas discharges (non-thermal plasmas), plasma emission, keratinocyte cells

Procedia PDF Downloads 602