Search results for: plant infections
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4276

Search results for: plant infections

2896 Case Report: Ocular Helminth - In Unusual Site (Lens)

Authors: Chandra Shekhar Majumder, Md. Shamsul Haque, Khondaker Anower Hossain, Md. Rafiqul Islam

Abstract:

Introduction: Ocular helminths are parasites that infect the eye or its adnexa. They can be either motile worms or sessile worms that form cysts. These parasites require two hosts for their life cycle, a definite host (usually a human) and an intermediate host (usually an insect). While there have been reports of ocular helminths infecting various structures of the eye, including the anterior chamber and subconjunctival space, there is no previous record of such a case involving the lens. Research Aim: The aim of this case report is to present a rare case of ocular helminth infection in the lens and to contribute to the understanding of this unusual site of infection. Methodology: This study is a case report, presenting the details and findings of an 80-year-old retired policeman who presented with severe pain, redness, and vision loss in the left eye. The patient had a history of diabetes mellitus and hypertension. The examination revealed the presence of a thread-like helminth in the lens. The patient underwent treatment and follow-up, and the helminth specimen was sent for identification to the department of Parasitology. Case report: An 80-year-old retired policeman attended the OPD, Faridpur Medical College Hospital with the complaints of severe pain, redness and gross dimness of vision of the left eye for 5 days. He had a history of diabetes mellitus and hypertension for 3 years. On examination, L/E visual acuity was PL only, moderate ciliary congestion, KP 2+, cells 2+ and posterior synechia from 5 to 7 O’clock position was found. Lens was opaque. A thread like helminth was found under the anterior of the lens. The worm was moving and changing its position during examination. On examination of R/E, visual acuity was 6/36 unaided, 6/18 with pinhole. There was lental opacity. Slit-lamp and fundus examination were within normal limit. Patient was admitted in Faridpur Medical College Hospital. Diabetes mellitus was controlled with insulin. ICCE with PI was done on the same day of admission under depomedrol coverage. The helminth was recovered from the lens. It was thread like, about 5 to 6 mm in length, 1 mm in width and pinkish in colour. The patient followed up after 7 days, VA was HM, mild ciliary congestion, few KPs and cells were present. Media was hazy due to vitreous opacity. The worm was sent to the department of Parasitology, NIPSOM, Dhaka for identification. Findings: The findings of this case report highlight the presence of a helminth in the lens, which has not been previously reported. The helminth was successfully removed from the lens, but the patient experienced complications such as anterior uveitis and vitreous opacity. The exact mechanism by which the helminth enters the lens remains unclear. Theoretical Importance: This case report contributes to the existing literature on ocular helminth infections by reporting a unique case involving the lens. It highlights the need for further research to understand the pathogenesis and mechanism of entry of helminths in the lens. Data Collection and Analysis Procedures: The data for this case report were collected through clinical examination and medical records of the patient. The findings were described and presented in a descriptive manner. No statistical analysis was conducted. Question Addressed: This case report addresses the question of whether ocular helminth infections can occur in the lens, which has not been previously reported. Conclusion: To the best of our knowledge, this is the first reported case of ocular helminth infection in the lens. The presence of the helminth in the lens raises interesting questions regarding its pathogenesis and entry mechanism. Further study and research are needed to explore these aspects. Ophthalmologists and parasitologists should be aware of the possibility of ocular helminth infections in unusual sites like the lens.

Keywords: ocular, helminth, unsual site, lens

Procedia PDF Downloads 62
2895 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 423
2894 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 215
2893 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion

Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen

Abstract:

These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.

Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria

Procedia PDF Downloads 167
2892 Sceletium Tortuosum: A review on its Phytochemistry, Pharmacokinetics, Biological and Clinical Activities

Authors: Tomi Lois Olatunji, Frances Siebert, Ademola Emmanuel Adetunji, Brian Harvey, Johane Gericke, Josias Hamman, Frank Van Der Kooy

Abstract:

Ethnopharmacological relevance: Sceletium tortuosum (L.) N.E.Br, the most sought after and widely researched species in the genus Sceletium is a succulent forb endemic to South Africa. Traditionally, this medicinal plant is mainly masticated or smoked and used for the relief of toothache, abdominal pain, and as a mood-elevator, analgesic, hypnotic, anxiolytic, thirst and hunger suppressant, and for its intoxicating/euphoric effects. Sceletium tortuosum is currently of widespread scientific interest due to its clinical potential in treating anxiety and depression, relieving stress in healthy individuals, and enhancing cognitive functions. These pharmacological actions are attributed to its phytochemical constituents referred to as mesembrine-type alkaloids. Aim of the review: The aim of this review was to comprehensively summarize and critically evaluate recent research advances on the phytochemistry, pharmacokinetics, biological and clinical activities of the medicinal plant S. tortuosum. Additionally, current ongoing research and future perspectives are also discussed. Methods: All relevant scientific articles, books, MSc and Ph.D. dissertations on botany, behavioral pharmacology, traditional uses, and phytochemistry of S. tortuosum were retrieved from different databases (including Science Direct, PubMed, Google Scholar, Scopus and Web of Science). For pharmacokinetics and pharmacological effects of S. tortuosum, the focus fell on relevant publications published between 2009 and 2021. Results: Twenty-five alkaloids belonging to four structural classes viz: mesembrine, Sceletium A4, joubertiamine, and tortuosamine, have been identified from S. tortuosum, of which the mesembrine class is predominant. The crude extracts and commercially available standardized extracts of S. tortuosum have displayed a wide spectrum of biological activities (e.g. antimalarial, anti-oxidant, immunomodulatory, anti-HIV, neuroprotection, enhancement of cognitive function) in in vitro or in vivo studies. This plant has not yet been studied in a clinical population, but has potential for enhancing cognitive function, and managing anxiety and depression. Conclusion: As an important South African medicinal plant, S. tortuosum has garnered many research advances on its phytochemistry and biological activities over the last decade. These scientific studies have shown that S. tortuosum has various bioactivities. The findings have further established the link between the phytochemistry and pharmacological application, and support the traditional use of S. tortuosum in the indigenous medicine of South Africa.

Keywords: Aizoaceae, Mesembrine, Serotonin, Sceletium tortuosum, Zembrin®, psychoactive, antidepressant

Procedia PDF Downloads 211
2891 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 344
2890 Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation

Authors: Harun Rashid, Keerthi S. S. Atapaththu, Takashi Asaeda

Abstract:

Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella.

Keywords: antioxidant enzymes, cesium, growth, Nitella, oxidative stress

Procedia PDF Downloads 422
2889 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 147
2888 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 116
2887 A Nucleic Acid Extraction Method for High-Viscosity Floricultural Samples

Authors: Harunori Kawabe, Hideyuki Aoshima, Koji Murakami, Minoru Kawakami, Yuka Nakano, David D. Ordinario, C. W. Crawford, Iri Sato-Baran

Abstract:

With the recent advances in gene editing technologies allowing the rewriting of genetic sequences, additional market growth in the global floriculture market beyond previous trends is anticipated through increasingly sophisticated plant breeding techniques. As a prerequisite for gene editing, the gene sequence of the target plant must first be identified. This necessitates the genetic analysis of plants with unknown gene sequences, the extraction of RNA, and comprehensive expression analysis. Consequently, a technology capable of consistently and effectively extracting high-purity DNA and RNA from plants is of paramount importance. Although model plants, such as Arabidopsis and tobacco, have established methods for DNA and RNA extraction, floricultural species such as roses present unique challenges. Different techniques to extract DNA and RNA from various floricultural species were investigated. Upon sampling and grinding the petals of several floricultural species, it was observed that nucleic acid extraction from the ground petal solutions of low viscosity was straightforward; solutions of high viscosity presented a significant challenge. It is postulated that the presence of substantial quantities of polysaccharides and polyphenols in the plant tissue was responsible for the inhibition of nucleic acid extraction. Consequently, attempts were made to extract high-purity DNA and RNA by improving the CTAB method and combining it with commercially available nucleic acid extraction kits. The quality of the total extracted DNA and RNA was evaluated using standard methods. Finally, the effectiveness of the extraction method was assessed by determining whether it was possible to create a library that could be applied as a suitable template for a next-generation sequencer. In conclusion, a method was developed for consistent and accurate nucleic acid extraction from high-viscosity floricultural samples. These results demonstrate improved techniques for DNA and RNA extraction from flowers, help facilitate gene editing of floricultural species and expand the boundaries of research and commercial opportunities.

Keywords: floriculture, gene editing, next-generation sequencing, nucleic acid extraction

Procedia PDF Downloads 13
2886 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil

Authors: Ritu Chaturvedi, Manoj Paul

Abstract:

A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.

Keywords: heavy metal, mycorrhiza, pea, phyroremediation

Procedia PDF Downloads 228
2885 Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings

Authors: Olusola Nafisat Omoniyi

Abstract:

Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems.

Keywords: agriculture, allelopathic, salinity, soil, tomato, production, photosynthesis

Procedia PDF Downloads 212
2884 Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production

Authors: Ali Montazar

Abstract:

This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase.

Keywords: alfalfa, onions, spinach, sugar beets, subsurface drip irrigation

Procedia PDF Downloads 120
2883 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 200
2882 Identification of Viruses Infecting Garlic Plants in Colombia

Authors: Diana M. Torres, Anngie K. Hernandez, Andrea Villareal, Magda R. Gomez, Sadao Kobayashi

Abstract:

Colombian Garlic crops exhibited mild mosaic, yellow stripes, and deformation. This group of symptoms suggested a viral infection. Several viruses belonging to the genera Potyvirus, Carlavirus and Allexivirus are known to infect garlic and lower their yield worldwide, but in Colombia, there are no studies of viral infections in this crop, only leek yellow stripe virus (LYSV) has been reported to our best knowledge. In Colombia, there are no management strategies for viral diseases in garlic because of the lack of information about viral infections on this crop, which is reflected in (i) high prevalence of viral related symptoms in garlic fields and (ii) high dispersal rate. For these reasons, the purpose of the present study was to evaluate the viral status of garlic in Colombia, which can represent a major threat on garlic yield and quality for this country 55 symptomatic leaf samples were collected for virus detection by RT-PCR and mechanical inoculation. Total RNA isolated from infected samples were subjected to RT-PCR with primers 1-OYDV-G/2-OYDV-G for Onion yellow dwarf virus (OYDV) (expected size 774pb), 1LYSV/2LYSV for LYSV (expected size 1000pb), SLV 7044/SLV 8004 for Shallot latent virus (SLV) (expected size 960pb), GCL-N30/GCL-C40 for Garlic common latent virus (GCLV) (expected size 481pb) and EF1F/EF1R for internal control (expected size 358pb). GCLV, SLV, and LYSV were detected in infected samples; in 95.6% of the analyzed samples was detected at least one of the viruses. GCLV and SLV were detected in single infection with low prevalence (9.3% and 7.4%, respectively). Garlic generally becomes coinfected with several types of viruses. Four viral complexes were identified: three double infection (64% of analyzed samples) and one triple infection (15%). The most frequent viral complex was SLV + GCLV infecting 48.1% of the samples. The other double complexes identified had a prevalence of 7% (GCLV + LYSV and SLV + LYSV) and 5.6% of the samples were free from these viruses. Mechanical transmission experiments were set up using leaf tissues of collected samples from infected fields, different test plants were assessed to know the host range, but it was restricted to C. quinoa, confirming the presence of detected viruses which have limited host range and were detected in C. quinoa by RT-PCR. The results of molecular and biological tests confirm the presence of SLV, LYSV, and GCLV; this is the first report of SLV and LYSV in garlic plants in Colombia, which can represent a serious threat for this crop in this country.

Keywords: SLV, GCLV, LYSV, leek yellow stripe virus, Allium sativum

Procedia PDF Downloads 144
2881 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 141
2880 Voices of Youth: Contributing to Healthy Teens

Authors: Christa Beyers

Abstract:

Investing in the health of youth is essential for the well-being of society. If youth do not live a healthy life, the future of the global workforce and overall development of adolescents looks bleak given the challenges posed in this developmental stage. The idea of sexuality education at home and in our schools is a controversial and contentious subject, as many parents and teachers do not hold the same beliefs as to what content should be taught. Despite high incidence of HIV and STD infections, early school dropout and teen pregnancies, sexuality education has still not been given the recognition or importance it deserves. By giving youth a voice can lead to both behavioural and policy changes. This article is based on a literature review of sex and sexuality education from a social studies approach. This article argues that adults tend to teach from their own perspective, which does not meet the needs of youth, thereby ignoring the social aspects of sexual behaviour.

Keywords: sexuality education, adolescents, communication, cycle of socialization

Procedia PDF Downloads 193
2879 Endemic Asteraceae from Mauritius Islands as Potential Phytomedicines

Authors: S.Kauroo, J. Govinden Soulange, D. Marie

Abstract:

Psiadia species from the Asteraceae are traditionally used in the folk medicine of Mauritius to treat cutaneous and bronchial infections. The present study aimed at validating the phytomedicinal properties of the selected species from the Asteraceae family, namely Psiadia arguta, Psiadia viscosa, Psiadia lithospermifolia, and Distephanus populifolius. Dried hexane, ethyl acetate, and methanol leaf extracts were studied for their antioxidant properties using the DPPH (1, 1-diphenyl-2-picryl-hydrazyl), FRAP (Ferric Reducing Ability of Plasma), and Deoxyribose assays. Antibacterial activity against human pathogenic bacteria namely Escherichia coli (ATCC 27853), Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), Klebsiella pneumonia (ATCC27853), Pseudomonas aeruginosa (ATCC 27853), and Bacillus cereus (ATCC 11778) was measured using the broth microdilution assay. Qualitative phytochemical screening using standard methods revealed the presence of coumarins, tannins, leucoanthocyanins, and steroids in all the tested extracts. The measured phenolics level of the selected plant extracts varied from 24.0 to 231.6 mg GAE/g with the maximum level in methanol extracts in all four species. The highest flavonoids and proanthocyanidins content was noted in Psiadia arguta methanolic extracts with 65.7±1.8 mg QE/g and 5.1±0.0 mg CAT/g dry weight (DW) extract, respectively. The maximum free radical scavenging activity was measured in Psiadia arguta methanol and ethyl acetate extracts with IC50 11.3±0.2 and 11.6± 0.2 µg/mL, respectively and followed by Distephanus populifolius methanol extracts with an IC50 of 11.3± 0.8 µg/mL. The maximum ferric reducing antioxidant potential was noted in Psiadia lithospermifolia methanol extracts with a FRAP value of 18.8 ± 0.4 µmol Fe2+/L/g DW. The antioxidant capacity based on DPPH and Deoxyribose values were negatively related to total phenolics, flavonoid and proanthocyanidins content while the ferric reducing antioxidant potential were strongly correlated to total phenolics, flavonoid and proanthocyanidins content. All four species exhibited antimicrobial activity against the tested bacteria (both Gram-negative and Gram-positive). Interestingly, the hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia were more active than the control antibiotic Chloramphenicol. The Minimum inhibitory concentration (MIC) values for hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia against the tested bacteria ranged from (62.5 to 500 µg/ml). These findings validate the use of these tested Asteraceae in the traditional medicine of Mauritius and also highlight their pharmaceutical potential as prospective phytomedicines.

Keywords: antibacterial, antioxidant, DPPH, flavonoids, FRAP, Psiadia spp

Procedia PDF Downloads 523
2878 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant

Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park

Abstract:

CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).

Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method

Procedia PDF Downloads 215
2877 A Critical Geography of Reforestation Program in Ghana

Authors: John Narh

Abstract:

There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.

Keywords: translocality, deforestation, forest management, social network

Procedia PDF Downloads 95
2876 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method

Authors: Marek Dlapa

Abstract:

The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.

Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value

Procedia PDF Downloads 136
2875 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 74
2874 Decommissioning of Nuclear Power Plants: The Current Position and Requirements

Authors: A. Stifi, S. Gentes

Abstract:

Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.

Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development

Procedia PDF Downloads 466
2873 Challenging Clinical Scenario of Blood Stream Candida Infections – An Indian Experience

Authors: P. Uma Devi, S. Sujith, K. Rahul, T. S. Dipu, V. Anil Kumar , Vidya Menon

Abstract:

Introduction: Candida is an important cause of bloodstream infections (BSIs), causing significant mortality and morbidity. The epidemiology of Candida infection is also changing, mainly in relation to the number of episodes caused by species Candida non-albicans. However, in India, the true burden of candidemia is not clear. Thus, this study was conducted to evaluate the clinical characteristics, species distribution, antifungal susceptibility and outcome of candidemia at our hospital. Methodology: Between January 2012 and April 2014, adult patients with at least one positive blood culture for Candida species were identified through the microbiology laboratory database (for each patient only the first episode of candidemia was recorded). Patient data was collected by retrospective chart review of clinical characteristics including demographic data, risk factors; species distribution, resistance to antifungals and survival. Results: A total of 165 episodes of Candida BSI were identified, with 115 episodes occurring in adult patients. Most of the episodes occurred in males (69.6%). Nearly 82.6% patients were between 41 to 80 years and majority of the patients were in the intensive care unit (65.2%) at the time of diagnosis. On admission, 26.1% and 18.3% patients had pneumonia and urinary tract infection, respectively. Majority of the candidemia episodes were found in the general medicine department (23.5%) followed by gastrointestinal surgery (13.9%) and medical oncology & haematology (13%). Risk factors identified were prior hospitalization within one year (83.5%), antibiotic therapy within the last one month (64.3%), indwelling urinary catheter (63.5%), central venous catheter use (59.1%), diabetes mellitus (53%), severe sepsis (45.2%), mechanical ventilation (43.5%) and surgery (36.5%). C. tropicalis (30.4%) was the leading cause of infection followed by C. parapsilosis (28.7%) and C. albicans (13%). Other non-albicans species isolated included C. haemulonii (7.8%), C. glabrata (7%), C. famata (4.3%) and C. krusei (1.7%). Antifungal susceptibility to fluconazole was 87.9% (C. parapsilosis), 100% (C. tropicalis) and 93.3% (C. albicans). Mortality was noted in 51 patients (44.3%). Early mortality (within 7 days) was noted in 32 patients while late mortality (between 7 and 30 days) was noted in 19 patients. Conclusion: In recent years, candidemia has been flourishing in critically ill patients. Comparison of data from our own hospital from 2005 shows a doubling of the incidence. Rapid changes in the rate of infection, potential risk factors, and emergence of non-albicans Candida demand continued surveillance of this serious BSI. High index of suspicion and sensitive diagnostics are essential to improve outcomes in resource limited settings with emergence of non-albicans Candida.

Keywords: antifungal susceptibility, candida albicans, candidemia, non-albicans candida

Procedia PDF Downloads 450
2872 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 57
2871 Eucalyptus camaldulensis Leaves Attacked by the Gall Wasp Leptocybe invasa: A Phyto-Volatile Constituents Study

Authors: Maged El-Sayed Mohamed

Abstract:

Eucalyptus camaldulensis is one on the most well-known species of the genus Eucalyptus in the Middle east, its importance relay on the high production of its unique volatile constituents which exhibits many medicinal and pharmacological activities. The gall-forming wasp (Leptocybe invasa) has recently come into sight as the main pest attacking E. camaldulensis and causing severe injury. The wasp lays its eggs in the petiole and midrib of leaves and stems of young shoots of E. camaldulensis, which leads to gall formation. Gall formation by L. invasa damages growing shoot and leaves of Eucalyptus, resulting in abscission of leaves and drying. AIM: This study is an attempt to investigate the effect of the gall wasp (Leptocybe invasa) attack on the volatile constitutes of E. camaldulensis. This could help in the control of this wasp through stimulating plant defenses or production of a new allelochemicals or insecticide. The study of volatile constitutes of Eucalyptus before and after attack by the wasp can help the re-use and recycle of the infected Eucalyptus trees for new pharmacological and medicinal activities. Methodology: The fresh gall wasp-attacked and healthy leaves (100 g each) were cut and immediately subjected to hydrodistillation using Clevenger-type apparatus for 3 hours. The volatile fractions isolated were analyzed using Gas chromatography/mass spectrometry (GC/MS). Kovat’s retention indices (RI) were calculated with respect to a set of co-injected standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral data and retention indices with Wiley Registry of Mass Spectral Data 10th edition (April 2013), NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and literature data. Results: Fifty-nine components representing 89.13 and 88.60% of the total volatile fraction content respectively were quantitatively analyzed. Twenty-six major compounds at an average concentration greater than 0.1 ± 0.02% have been used for the statistical comparison. From those major components, twenty-one were found in both the attacked and healthy Eucalyptus leaves’ fractions in different concentration and five components, mono terpene p-Mentha-2-4(8) diene and the sesquiterpenes δ-elemene, β-elemene, E-caryophyllene and Bicyclogermacrene, were unique and only produced in the attacked-leaves’ fraction. CONCLUSION: Newly produced components or those commonly found in the volatile fraction and changed in concentration could represent a part of the plant defense mechanisms or might be an element of the plant allelopathic and communication mechanisms. Identification of the components of the gall wasp-damaged leaves can help in their recycling for different physiological, pharmacological and medicinal uses.

Keywords: Eucalyptus camaldulensis, eucalyptus recycling, gall wasp, Leptocybe invasa, plant defense mechanisms, Terpene fraction

Procedia PDF Downloads 354
2870 Environmental Impact Assessment of Ambient Particle Industrial Complex Upon Vegetation Near Settling at El-Fatyah,Libya

Authors: Ashraf M. S. Soliman, Mohsen Elhasadi

Abstract:

The present study was undertaken to evaluate the impact of ambient particles emitted from an industrial complex located at El-Fatyah on growth, phytomass partitioning and accumulation, pigment content and nutrient uptake of two economically important crop species; barley (Hordeum vulgare L.Family: Poaceae) and broad bean (Vicia faba L. Family: Fabaceae) growing in the region. It was obvious from the present investigation that chlorophyll and carotenoid content showed significant responses to the industrial dust. Generally, the total pigment content of the two investigated crops in the two locations continually increased till the plant age reached 70 days after sowing then begins to decrease till the end of the growing season..The total uptake of N, P and K in the two studied species decreased in response to industrial dust in the study area compared to control location. In conclusion, barley and broad bean are very sensitive to air pollutants, and may consider as bioindicators for atmospheric pollution. Pollutants caused damage of their leaves, impair plant growth, hindered nutrient uptake and consequently limit primary productivity.

Keywords: Effect of Industrial Complex on barley and broad bean

Procedia PDF Downloads 534
2869 Potential Cross-Protection Roles of Chitooligosaccharide in Alleviating Cd Toxicity in Edible Rape (Brassica rapa L.)

Authors: Haiying Zong, Yi Yuan, Pengcheng Li

Abstract:

Cadmium (Cd), one of the toxic heavy metals, has high solubility and mobility in agricultural soils and is readily taken up by roots and transported to the vegetative and reproductive organs which can cause deleterious effects on crop yield and quality. Excess Cd in plants can interfere with many metabolic processes, such as photosynthesis, transpiration, respiration or nutrients homeostasis. Generally, the main methods to reduce Cd accumulation in plants are to decrease the concentration of Cd in the soil solution through reduction of Cd influx into the soil system, site selection, and management practices. However, these approaches can be very costly and consume a lot of energy Therefore, it is critical to develop effective approaches to reduce the Cd concentration in plants. It is proved that chitooligosaccharide (COS) can enhance the plant's tolerance to abiotic stress including drought stress, salinity stress, and toxic metal stress. However, so far little information is known about whether foliar application with COS modulates Cd-induced toxicity in plants. The metal detoxification processes of plants treated with COS also remain unclear. In this study, edible rape (Brassica rapa L.), one of the most widely consumed leafy vegetables, was selected as an experimental mode plant. The effect of foliar application with COS on reducing Cd accumulation in edible rape was investigated. Moreover, Cd subcellular distribution pattern in response to Cd stress in the rape plant sprayed with COS was further tested in order to explore the potential detoxification mechanisms in plants. The results demonstrated that spraying COS at different concentrations (25, 50,100 and 200 mg L-1) possess diverse functions including growth-promoting,chlorophyll contents-enhancing, malondialdehyde (MDA) level-decreasing in leaves, Cd2+ concentration-decreasingin shoots and roots of edible rape under Cd stress. In addition, it was found that COS can also dramatically improve superoxide dismutase (SOD) activity, catalase (CAT) activity and peroxidase (POX) activity of edible rape leaves. The relievingeffect of COS was related to theconcentration and COS with 50-100 mg L-1 displayed the best activity. Furtherly, theexperiments results exhibitedthat COS could decrease the proportion of Cd in the organelle fraction of leaves by 40.1% while enhance the proportion of Cd in the soluble fraction by 13.2% at the concentration of 50 mg L-1. The above results showed that COS may have thepotential to improve plant resistance to Cd via promoting antioxidant enzyme activities and altering Cd subcellular distribution. All the results described here open up a new way to study the protection role of COS in alleviating Cd tolerance and lay the foundation for future research about the detoxification mechanism at subcellular level.

Keywords: chitooligosaccharide, cadmium, edible rape (Brassica rapa L.), subcellular distribution

Procedia PDF Downloads 292
2868 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria

Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda

Abstract:

Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.

Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic

Procedia PDF Downloads 344
2867 Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin

Authors: Gabriela Kalcikova, Igor Bosevski, Ula Rozman, Andreja Zgajnar Gotvajn

Abstract:

Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment.

Keywords: antibiotics, biodegradability, tiamulin, toxicity

Procedia PDF Downloads 177