Search results for: healthcare data security
26365 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 17826364 Remote Wireless Patient Monitoring System
Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar
Abstract:
One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)
Procedia PDF Downloads 57226363 Is More Inclusive More Effective? The 'New Style' Public Distribution System in India
Authors: Avinash Kishore, Suman Chakrabarti
Abstract:
In September 2013, the parliament of India enacted the National Food Security Act (NFSA) which entitles two-thirds of India’s population to five kilograms of rice, wheat or coarse cereals per person per month at one to three rupees per kilogram. Five states in India—Andhra Pradesh, Chhattisgarh, Tamil Nadu, Odisha and West Bengal—had already implemented somewhat similar changes in the TPDS a few years earlier using their own budgetary resources. They made rice—coincidentally, all five states are predominantly rice-eating—available in fair price shops to a majority of their population at very low prices (less than Rs.3/kg). This paper tries to account for the changes in household consumption patterns associated with the change in TPDS policy in these states using data from household consumption surveys by the National Sample Survey Organization (NSSO). NSS data show improvement in the coverage of TPDS and average off-take of grains from fair price shops between 2004-05 and 2009-10 across all states of India. However, the increase in coverage and off-take was significantly higher in four out of these five states than in the rest of India. An average household in these states purchased three kilos more rice per month from fair price shops than its counterpart in non-treated states as a result of more generous TPDS policies backed by administrative reforms. The increase in consumption of PDS rice was the highest in Chhattisgarh, the poster state of PDS reforms. Households in Chhattisgarh used money saved on rice to spend more on pulses, edible oil, vegetables and sugar and other non-food items. We also find evidence that making TPDS more inclusive and more generous is not enough unless it is supported by administrative reforms to improve grain delivery and control diversion to open markets.Keywords: public distribution system, social safety-net, national food security act, diet quality, Chhattisgarh
Procedia PDF Downloads 37526362 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)
Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram
Abstract:
The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)
Procedia PDF Downloads 9826361 Solving 94-Bit ECDLP with 70 Computers in Parallel
Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai
Abstract:
Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.Keywords: Pollard's rho method, BN curve, Montgomery multiplication
Procedia PDF Downloads 27226360 Analysis of Big Data
Authors: Sandeep Sharma, Sarabjit Singh
Abstract:
As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.Keywords: big data, unstructured data, volume, variety, velocity
Procedia PDF Downloads 54926359 Reintegrating Forensic Mental Health Service Users into Communities in the Western Cape, South Africa
Authors: Zolani Metu
Abstract:
The death of more than 140 psychiatric patients who were unethically deinstitutionalized from the Life Esidimeni hospital Johannesburg, in 2016, shined a light on South Africa’s failing public mental healthcare system. Compounded by insufficient research evidence on African deinstitutionalization, this necessitates inquiries into deinstitutionalized mental healthcare, reintegration and community-based mental healthcare within the South African context. This study employed a quantitative research approach which utilized a cross-sectional research design, to investigate experiences with the reintegration of institutionalized forensic mental health service users into communities in the Western Cape, South Africa. A convenience sample of 100 mental health care workers from different occupational and organizational backgrounds in the Western Cape was purposively selected using the Western Cape Health Directorate as a sampling frame. A self-administered questionnaire (SAQ) was used as the data collection instrument. The results of the study indicate that criminogenic factors such as substance use, history of violent behaviour, criminal history and disruptive social behaviour complicate the reintegration of forensic mental health service users into communities. The current extent of reintegration of forensic mental health service users was found to be 'poor' (46%; n= 46); and financial difficulties, criminogenic factors and limited Community-Based Care (CBC) facilities were identified as key barriers to the reintegration process. 56% of all job applications for forensic mental health service users were unsuccessful, and 53% of all applications for their admission into CBC facilities were declined. Although social support (informal) was found to be essential for successful reintegration, institutional support (formal) through assertive community treatment (35%; n= 35) and CBC facilities (21%) and the disability grant (DG=50%) was found to be more important for family coping and reintegration. Moreover, 72% of respondents had positive perceptions about the process of reintegration; no statistically significant relationship was found between years of experience and perceptions about reintegration (P-value = 0.062); and perceptions were not found to be a barrier to reintegration. No statistically significant relationship was found between years of working experience and understanding the legislative framework of deinstitutionalization (P-Value =.0.061). However, using a Chi-square test, a significant relationship (P-value = 0.021) was found between sex and understanding the legal framework involved in the process of reintegration. The study recommends a post-2020 deinstitutionalization agenda that factors-in criminogenic realities associated with forensic mental health service users, and affirms the strengthening of PHC and community based care systems as precedents of successful deinstitutionalization and reintegration of mental health service users.Keywords: forensic mental health, deinstitutionalization, reintegration, mental health service users
Procedia PDF Downloads 16726358 Randomized Controlled Trial for the Management of Pain and Anxiety Using Virtual Reality During the Care of Older Hospitalized Patients
Authors: Corbel Camille, Le Cerf Flora, Capriz Françoise, Vaillant-Ciszewicz Anne-Julie, Breaud Jean, Guerin Olivier, Corveleyn Xavier
Abstract:
Background: The medical environment can generate stressful and anxiety-provoking situations for patients, particularly during painful care procedures for the older population. These stressful environments have deleterious effects on the quality of care and can even put the patient at risk and set the care team up for failure. The search for a solution is, therefore, imperative. The development of new technologies, such as virtual reality (VR), seems to be an answer to this problem. Objectives: The objective of this study is to compare the effects of virtual reality on pain and anxiety when caring for older hospitalized people with the effects of usual care. More precisely, different individual factors (age, cognitive level, individual preferences, etc.) and different virtual reality universes (personalized or non-personalized) are studied to understand the role of these factors in reducing pain and anxiety during care procedures. The aim of this study is to improve the quality of life of patients and caregivers in their work environment. Method: This mono-centered, randomized, controlled study was conducted from September 2023 to September 2024 on 120 participants recruited from the geriatric departments of the Cimiez Hospital, Nice, France. Participants are randomized into three groups: a control group, a personalized VR group and a non-personalized VR group. Each participant is followed during a painful care session. Data are collected before, during and after the care, using measures of pain (Algoplus and numerical scale) and anxiety (Hospital anxiety scale and numerical scale). Physiological assessments with an oximeter are also performed to collect both heart and respiratory rate measurements. The implementation of the care will be assessed among healthcare providers to evaluate its effects on the difficulty and fatigue associated with the care. Additionally, a questionnaire (System Usability Scale) will be administered at the conclusion of the study to determine the willingness of healthcare providers to integrate VR into their daily care practices. Result: The preliminary results indicate significant effects on anxiety (p=.001) and pain (p=<.001) following the VR intervention during care, as compared to the control group. Conclusion: The preliminary results suggest that VRI appears to be a suitable and effective method for reducing anxiety and pain among older hospitalized individuals compared with standard care. Finally, the experiences of healthcare professionals involved will also be considered to assess the impact of these interventions on working conditions and patient support.Keywords: anxiety, care, pain, older adults, virtual reality
Procedia PDF Downloads 7426357 A Comparative Study between Japan and the European Union on Software Vulnerability Public Policies
Authors: Stefano Fantin
Abstract:
The present analysis outcomes from the research undertaken in the course of the European-funded project EUNITY, which targets the gaps in research and development on cybersecurity and privacy between Europe and Japan. Under these auspices, the research presents a study on the policy approach of Japan, the EU and a number of Member States of the Union with regard to the handling and discovery of software vulnerabilities, with the aim of identifying methodological differences and similarities. This research builds upon a functional comparative analysis of both public policies and legal instruments from the identified jurisdictions. The result of this analysis is based on semi-structured interviews with EUNITY partners, as well as by the participation of the researcher to a recent report from the Center for EU Policy Study on software vulnerability. The European Union presents a rather fragmented legal framework on software vulnerabilities. The presence of a number of different legislations at the EU level (including Network and Information Security Directive, Critical Infrastructure Directive, Directive on the Attacks at Information Systems and the Proposal for a Cybersecurity Act) with no clear focus on such a subject makes it difficult for both national governments and end-users (software owners, researchers and private citizens) to gain a clear understanding of the Union’s approach. Additionally, the current data protection reform package (general data protection regulation), seems to create legal uncertainty around security research. To date, at the member states level, a few efforts towards transparent practices have been made, namely by the Netherlands, France, and Latvia. This research will explain what policy approach such countries have taken. Japan has started implementing a coordinated vulnerability disclosure policy in 2004. To date, two amendments can be registered on the framework (2014 and 2017). The framework is furthermore complemented by a series of instruments allowing researchers to disclose responsibly any new discovery. However, the policy has started to lose its efficiency due to a significant increase in reports made to the authority in charge. To conclude, the research conducted reveals two asymmetric policy approaches, time-wise and content-wise. The analysis therein will, therefore, conclude with a series of policy recommendations based on the lessons learned from both regions, towards a common approach to the security of European and Japanese markets, industries and citizens.Keywords: cybersecurity, vulnerability, European Union, Japan
Procedia PDF Downloads 15726356 A Case Study of the Political Determinant of Health on the Public Health Crisis of Malaria in Nigeria
Authors: Bisola Olumegbon
Abstract:
Globally, there were about 229 million cases of malaria in 2022. The sub-Saharan African region accounted for 92% of the reported cases and 94% of deaths. Nigeria had the highest number of malaria cases and deaths, representing 27% of global cases. This scholarly project was a case study guided by the political determinants of health. Triangulation of data using thematic analysis was used to identify the political determinants of malaria in Nigeria and to understand how the concept of interaction contributes to the persistence of the disease. The analysis involved a deductive and inductive approach based on the literature review and the evidence of political determinants gathered in the data. Participants’ in-depth interviews were used to collect data from frontline personnel. Data triangulation was done using thematic analysis, a method used to identify patterns and themes in qualitative data. The study findings revealed a correlation between political determinants of health and malaria management efforts in Nigeria. Some influencing factors included voting challenges, inadequate funding, lack of health priority from the government, noncompliance among patients, and hurdles to effective communication. The findings suggest a need to deliberately increase dedication to the political agenda, provide sufficient financial resources, enhance communication, and active community involvement to address the persistent malaria endemic effectively. Further study is recommended to identify interventions to address identified factors of political determinants of health to reduce malaria in Nigeria. Such intervention must involve collaboration with diverse stakeholders such as policymakers, healthcare professionals, community leaders, and researchers.Keywords: malaria, malaria management, health worker, stakeholders, political determinant of health
Procedia PDF Downloads 7526355 Exploring the Barriers Regarding Safe Discussions about Menopausal Symptom Management, as Perceived or Experienced by Pre-menopausal and Menopausal Women.
Authors: Karish Thavabalan, Alistair Ovenell, Aman Sutaria, Annabelle Parkhouse, Numan Baydemir, Theodore Lally
Abstract:
Background: Open discussions surrounding menopause are often associated with stigma, with many women feeling uncomfortable to engage in them with friends, colleagues, and healthcare professionals. Though the barriers regarding safe discussions of symptom management experienced by menopausal women are well documented, existing research offers little insight into whether these were shared by pre-menopausal women. This study aimed to explore the barriers regarding safe discussions about menopausal symptom management as perceived or experienced by pre-menopausal and menopausal women. Methods: This qualitative study was conducted over a 2-month period (March 2022 - April 2022) under the auspices of Imperial College Business School, London, UK. Snowball sampling was used to recruit both menopausal (age 45-70) and pre-menopausal participants (age <45), and sampling continued until data saturation was achieved. 16 semi-structured online interviews were conducted, and transcripts were thematically analyzed following Braun and Clarke’s six-step methodology. Results: A total of 7 higher themes regarding safe discussion of menopausal symptom management were identified by both pre-menopausal and menopausal women, including: “ineffective coping mechanisms”, “perceived onus to self-endure”, “lack of workplace support”, “poor knowledge of management approaches”, “poor healthcare infrastructure”, “poor support from friends and family”, “lack of knowledge and interest from a young age”. Conclusion: Identifying the barriers regarding safe discussion helped to highlight which areas require most significant intervention. Alongside tackling the barriers, menopausal women face, ultimately, there is a pertinent need to and address the lack of insight into menopause from a younger age and to encourage earlier discussions so as to not propagate the cycle of stigma.Keywords: menopause, stigma, safe discussions, symptom management
Procedia PDF Downloads 11126354 Assessing Sexual and Reproductive Health Literacy and Engagement Among Refugee and Immigrant Women in Massachusetts: A Qualitative Community-Based Study
Authors: Leen Al Kassab, Sarah Johns, Helen Noble, Nawal Nour, Elizabeth Janiak, Sarrah Shahawy
Abstract:
Introduction: Immigrant and refugee women experience disparities in sexual and reproductive health (SRH) outcomes, partially as a result of barriers to SRH literacy and to regular healthcare access and engagement. Despite the existing data highlighting growing needs for culturally relevant and structurally competent care, interventions are scarce and not well-documented. Methods: In this IRB-approved study, we used a community-based participatory research approach, with the assistance of a community advisory board, to conduct a qualitative needs assessment of SRH knowledge and service engagement with immigrant and refugee women from Africa or the Middle East and currently residing in Boston. We conducted a total of nine focus group discussions (FGDs) in partnership with medical, community, and religious centers, in six languages: Arabic, English, French, Somali, Pashtu, and Dari. A total of 44 individuals participated. We explored migrant and refugee women’s current and evolving SRH care needs and gaps, specifically related to the development of interventions and clinical best practices targeting SRH literacy, healthcare engagement, and informed decision-making. Recordings of the FGDs were transcribed verbatim and translated by interpreter services. We used open coding with multiple coders who resolved discrepancies through consensus and iteratively refined our codebook while coding data in batches using Dedoose software. Results: Participants reported immigrant adaptation experiences, discrimination, and feelings of trust, autonomy, privacy, and connectedness to family, community, and the healthcare system as factors surrounding SRH knowledge and needs. The context of previously learned SRH knowledge was commonly noted to be in schools, at menstruation, before marriage, from family members, partners, friends, and online search engines. Common themes included empowering strength drawn from religious and cultural communities, difficulties bridging educational gaps with their US- born daughters, and a desire for more SRH education from multiple sources, including family, health care providers, and religious experts & communities. Regarding further SRH education, participants’ preferences varied regarding ideal platform (virtual vs. in-person), location (in religious and community centers or not), smaller group sizes, and the involvement of men. Conclusions: Based on these results, empowering SRH initiatives should include both community and religious center-based, as well as clinic-based, interventions. Interventions should be composed of frequent educational workshops in small groups involving age-grouped women, daughters, and (sometimes) men, tailored SRH messaging, and the promotion of culturally, religiously, and linguistically competent care.Keywords: community, immigrant, religion, sexual & reproductive health, women's health
Procedia PDF Downloads 12726353 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 10926352 Transforming Data Science Curriculum Through Design Thinking
Authors: Samar Swaid
Abstract:
Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.Keywords: data science, design thinking, AI, currculum, transformation
Procedia PDF Downloads 8226351 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care
Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris
Abstract:
Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventionsKeywords: carbon footprint, environmental impact, primary care, sustainable healthcare
Procedia PDF Downloads 6326350 Clinical Pathway for Postoperative Organ Transplants
Authors: Tahsien Okasha
Abstract:
Transplantation medicine is one of the most challenging and complex areas of modern medicine. Some of the key areas for medical management are the problems of transplant rejection, during which the body has an immune response to the transplanted organ, possibly leading to transplant failure and the need to immediately remove the organ from the recipient. When possible, transplant rejection can be reduced through serotyping to determine the most appropriate donor-recipient match and through the use of immunosuppressant drugs. Postoperative care actually begins before the surgery in terms of education, discharge planning, nutrition, pulmonary rehabilitation, and patient/family education. This also allows for expectations to be managed. A multidisciplinary approach is the key, and collaborative team meetings are essential to ensuring that all team members are "on the same page.". The following clinical pathway map and guidelines with the aim to decrease alteration in clinical practice and are intended for those healthcare professionals who look after organ transplant patients. They are also intended to be useful to both medical and surgical trainees as well as nurse specialists and other associated healthcare professionals involved in the care of organ transplant patients. This pathway is general pathway include the general guidelines that can be applicable for all types of organ transplant with special considerations to each organ.Keywords: organ transplant, clinical pathway, postoperative care, same page
Procedia PDF Downloads 43826349 Banking and Accounting Analysis Researches Effect on Environment and Income
Authors: Gerges Samaan Henin Abdalla
Abstract:
Ultra-secured methods of banking services have been introduced to the customer, such as online banking. Banks have begun to consider electronic banking (e-banking) as a way to replace some traditional branch functions by using the Internet as a distribution channel. Some consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. Not only is it time consuming, but it is also a repeatable activity with a certain frequency. To solve this problem, the concept of account aggregation was added as a solution. Account consolidation in e-banking as a form of electronic banking appears to build a stronger relationship with customers. An account linking service is generally referred to as a service that allows customers to manage their bank accounts held at different institutions via a common online banking platform that places a high priority on security and data protection. Consumers have at least one account at multiple banks and access these accounts through online banking. To check their current net worth, clients need to log into each of their accounts, get detailed information, and work toward consolidation. The article provides an overview of the account aggregation approach in e-banking as a new service in the area of e-banking.Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise development
Procedia PDF Downloads 4826348 On the Resilience of Operational Technology Devices in Penetration Tests
Authors: Marko Schuba, Florian Kessels, Niklas Reitz
Abstract:
Operational technology (OT) controls physical processes in critical infrastructures and economically important industries. With the convergence of OT with classical information technology (IT), rising cybercrime worldwide and the increasingly difficult geopolitical situation, the risks of OT infrastructures being attacked are growing. Classical penetration testing, in which testers take on the role of an attacker, has so far found little acceptance in the OT sector - the risk that a penetration test could do more harm than good seems too great. This paper examines the resilience of various OT systems using typical penetration test tools. It is shown that such a test certainly involves risks, but is also feasible in OT if a cautious approach is taken. Therefore, OT penetration testing should be considered as a tool to improve the cyber security of critical infrastructures.Keywords: penetration testing, OT, ICS, OT security
Procedia PDF Downloads 2026347 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 23526346 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 33026345 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 10326344 Over the Air Programming Method for Learning Wireless Sensor Networks
Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha
Abstract:
Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.Keywords: WSN, over the air programming, virtual lab, AT45DB
Procedia PDF Downloads 37926343 Clinical Pathway for Postoperative Organ Transplantation
Authors: Tahsien Okasha
Abstract:
Transplantation medicine is one of the most challenging and complex areas of modern medicine. Some of the key areas for medical management are the problems of transplant rejection, during which the body has an immune response to the transplanted organ, possibly leading to transplant failure and the need to immediately remove the organ from the recipient. When possible, transplant rejection can be reduced through serotyping to determine the most appropriate donor-recipient match and through the use of immunosuppressant drugs. Postoperative care actually begins before the surgery in terms of education, discharge planning, nutrition, pulmonary rehabilitation, and patient/family education. This also allows for expectations to be managed. A multidisciplinary approach is the key, and collaborative team meetings are essential to ensuring that all team members are "on the same page." .The following clinical pathway map and guidelines with the aim to decrease alteration in clinical practice and are intended for those healthcare professionals who look after organ transplant patients. They are also intended to be useful to both medical and surgical trainees as well as nurse specialists and other associated healthcare professionals involved in the care of organ transplant patients. This pathway is general pathway include the general guidelines that can be applicable for all types of organ transplant with special considerations to each organ.Keywords: postoperative care, organ transplant, clinical pathway, patient
Procedia PDF Downloads 46026342 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, WangQun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.Keywords: data cleaning, dependency rules, violation data discovery, data repair
Procedia PDF Downloads 56426341 Exploring the Barriers Regarding Safe Discussions about Menopausal Symptom Management, As Perceived or Experienced by Pre-menopausal and Menopausal Women
Authors: Karish Thavabalan, Aman Sutaria, Alistair Ovenell, Annabelle Parkhouse, Numan Baydemir, Theodore Lally
Abstract:
Background: Open discussions surrounding menopause are often associated with stigma, with many women feeling uncomfortable engaging in them with friends, colleagues, and healthcare professionals. Though the barriers regarding safe discussions of symptom management experienced by menopausal women are well documented, existing research offers little insight into whether these were shared by pre-menopausal women. This study aimed to explore the barriers regarding safe discussions about menopausal symptom management as perceived or experienced by pre-menopausal and menopausal women. Methods: This qualitative study was conducted over a 2-month period (March 2022 - April 2022) under the auspices of Imperial College Business School, London, UK. Snowball sampling was used to recruit both menopausal (age 45-70) and pre-menopausal participants (age <45) and sampling continued until data saturation was achieved. Sixteen semi-structured online interviews were conducted, and transcripts were thematically analyzed following Braun and Clarke’s six-step methodology. Results: A total of 7 higher themes regarding safe discussion of menopausal symptom management were identified by both pre-menopausal and menopausal women, including: “ineffective coping mechanisms,” “perceived onus to self-endure,” “lack of workplace support,” “poor knowledge of management approaches,” “poor healthcare infrastructure,” “poor support from friends and family,” “lack of knowledge and interest from a young age.” Conclusion: Identifying the barriers regarding safe discussion helped to highlight which areas require the most significant intervention. Alongside tackling the barriers, menopausal women face, ultimately, there is a pertinent need to address the lack of insight into menopause from a younger age and to encourage earlier discussions so as to not propagate the cycle of stigma.Keywords: menopause, safe discussion, symptom management, stigma
Procedia PDF Downloads 5926340 Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism
Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal
Abstract:
Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.Keywords: cancer, coping mechanisms, denial, healthcare services
Procedia PDF Downloads 8726339 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool
Abstract:
Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor
Procedia PDF Downloads 34426338 Application of Directed Acyclic Graphs for Threat Identification Based on Ontologies
Authors: Arun Prabhakar
Abstract:
Threat modeling is an important activity carried out in the initial stages of the development lifecycle that helps in building proactive security measures in the product. Though there are many techniques and tools available today, one of the common challenges with the traditional methods is the lack of a systematic approach in identifying security threats. The proposed solution describes an organized model by defining ontologies that help in building patterns to enumerate threats. The concepts of graph theory are applied to build the pattern for discovering threats for any given scenario. This graph-based solution also brings in other benefits, making it a customizable and scalable model.Keywords: directed acyclic graph, ontology, patterns, threat identification, threat modeling
Procedia PDF Downloads 14026337 The Role of Trust in Intention to Use Prescribed and Non-prescribed Connected Devices
Authors: Jean-michel Sahut, Lubica Hikkerova, Wissal Ben Arfi
Abstract:
The Internet of Things (IoT) emerged over the last few decades in many fields. Healthcare can significantly benefit from IoT. This study aims to examine factors influencing the adoption of IoT in eHealth. To do so, an innovative framework has been developed which applies both the Technology Acceptance Model (TAM) and the United Theory of Acceptance and Use of Technology (UTAUT) model and builds on them by analyzing trust and perceived-risk dimensions to predict intention to use IoT in eHealth. In terms of methodology, a Partial Least Approach Structural Equation Modelling was carried out on a sample of 267 French users. The findings of this research support the significant positive effect of constructs set out in the TAM (perceived ease of use) on predicting behavioral intention by adding the effects identified for UTAUT variables. This research also demonstrates how perceived risk and trust are significant factors for models examining behavioral intentions to use IoT. Perceived risk enhanced by the trust has a significant effect on patients’ behavioral intentions. Moreover, the results highlight the key role of prescription as a moderator of IoT adoption in eHealth. Depending on whether an individual has a prescription to use connected devices or not, ease of use has a stronger impact on adoption, while trust has a negative impact on adoption for users without a prescription. In accordance with the empirical results, several practical implications can be proposed. All connected devices applied in a medical context should be divided into groups according to their functionality: whether they are essential for the patient’s health and whether they require a prescription or not. Devices used with a prescription are easily accepted because the intention to use them is moderated by the medical trust (discussed above). For users without a prescription, ease of use is a more significant factor than for users who have a prescription. This suggests that currently, connected e-Health devices and online healthcare systems have to take this factor into account to better meet the needs and expectations of end-users.Keywords: internet of things, Healthcare, trust, consumer acceptance
Procedia PDF Downloads 14626336 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries
Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar
Abstract:
Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.Keywords: energy efficiency, environmental, OPEC, data envelopment analysis
Procedia PDF Downloads 388