Search results for: artificial air storage reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4584

Search results for: artificial air storage reservoir

3204 Breeding for Hygienic Behavior in Honey Bees

Authors: Michael Eickermann, Juergen Junk

Abstract:

The Western honey (Apis mellifera) is threatened by a number of parasites, especially the devastating Varroa mite (Varroa destructor) is responsible for a high level of mortality over winter, e.g., in Europe and USA. While the use of synthetic pesticides or organic acids has been preferred so far to control this parasite, breeding strategies for less susceptible honey bees are in early stages. Hygienic behavior can be an important tool for controlling Varroa destructor. Worker bees with a high level of this behavior are able to detect infested brood in the cells under the wax lid during pupation and remove them out of the hive. The underlying processes of this behavior are only partly investigated, but it is for sure that hygienic behavior is heritable and therefore, can be integrated into commercial breeding lines. In a first step, breeding lines with a high level of phenotypic hygienic behavior have been identified by using a bioassay for accurate assessment of this trait in a long-term national breeding program in Luxembourg since 2015. Based on the artificial infestation of nucleus colonies with 150 phoretic Varroa destructor mites, the level of phenotypic hygienic behavior was detected by counting the number of mites in all stages, twelve days after infestation. A nucleus with a high level of hygienic behavior was overwintered and used for breeding activities in the following years. Artificial insemination was used to combine different breeding lines. Buckfast lines, as well as Carnica lines, were used. While Carnica lines offered only a low increase of hygienic behavior up to maximum 62.5%, Buckfast lines performed much better with mean levels of more than 87.5%. Some mating ends up with a level of 100%. But even with a level of 82.5% Varroa mites are not able to reproduce in the colony anymore. In a final step, a nucleus with a high level of hygienic behavior were build up to full colonies and located at two places in Luxembourg to build up a drone congregation area. Local beekeepers can bring their nucleus to this location for mating the queens with drones offering a high level of hygienic behavior.

Keywords: agiculture, artificial insemination, honey bee, varroa destructor

Procedia PDF Downloads 136
3203 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 440
3202 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 619
3201 Cultivating Responsible AI: For Cultural Heritage Preservation in India

Authors: Varsha Rainson

Abstract:

Artificial intelligence (AI) has great potential and can be used as a powerful tool of application in various domains and sectors. But with the application of AI, there comes a wide spectrum of concerns around bias, accountability, transparency, and privacy. Hence, there is a need for responsible AI, which can uphold ethical and accountable practices to ensure that things are transparent and fair. The paper is a combination of AI and cultural heritage preservation, with a greater focus on India because of the rich cultural legacy that it holds. India’s cultural heritage in itself contributes to its identity and the economy. In this paper, along with discussing the impact culture holds on the Indian economy, we will discuss the threats that the cultural heritage is exposed to due to pollution, climate change and urbanization. Furthermore, the paper reviews some of the exciting applications of AI in cultural heritage preservation, such as 3-D scanning, photogrammetry, and other techniques which have led to the reconstruction of cultural artifacts and sites. The paper eventually moves into the potential risks and challenges that AI poses in cultural heritage preservation. These include ethical, legal, and social issues which are to be addressed by organizations and government authorities. Overall, the paper strongly argues the need for responsible AI and the important role it can play in preserving India’s cultural heritage while holding importance to value and diversity.

Keywords: responsible AI, cultural heritage, artificial intelligence, biases, transparency

Procedia PDF Downloads 187
3200 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.

Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling

Procedia PDF Downloads 425
3199 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome

Authors: Karam Chand Gupta

Abstract:

When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.

Keywords: dome, mesh, slab, steel

Procedia PDF Downloads 681
3198 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 365
3197 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: artificial intelligence, computer science, criminal investigation, digital forensics

Procedia PDF Downloads 212
3196 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage

Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh

Abstract:

Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.

Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range

Procedia PDF Downloads 162
3195 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton

Authors: Saba Belgheisi

Abstract:

Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.

Keywords: coating, whey protein, mutton, moisture, sensory

Procedia PDF Downloads 461
3194 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Petroula A. Tarantili

Abstract:

In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene

Procedia PDF Downloads 321
3193 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 147
3192 Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product

Authors: Esther Eduzor, Charles A. Negbenebor, Helen O. Agu

Abstract:

Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry.

Keywords: citric acid, cloves, smoked meat, bioengineering

Procedia PDF Downloads 445
3191 Overview of Environmental and Economic Theories of the Impact of Dams in Different Regions

Authors: Ariadne Katsouras, Andrea Chareunsy

Abstract:

The number of large hydroelectric dams in the world has increased from almost 6,000 in the 1950s to over 45,000 in 2000. Dams are often built to increase the economic development of a country. This can occur in several ways. Large dams take many years to build so the construction process employs many people for a long time and that increased production and income can flow on into other sectors of the economy. Additionally, the provision of electricity can help raise people’s living standards and if the electricity is sold to another country then the money can be used to provide other public goods for the residents of the country that own the dam. Dams are also built to control flooding and provide irrigation water. Most dams are of these types. This paper will give an overview of the environmental and economic theories of the impact of dams in different regions of the world. There is a difference in the degree of environmental and economic impacts due to the varying climates and varying social and political factors of the regions. Production of greenhouse gases from the dam’s reservoir, for instance, tends to be higher in tropical areas as opposed to Nordic environments. However, there are also common impacts due to construction of the dam itself, such as, flooding of land for the creation of the reservoir and displacement of local populations. Economically, the local population tends to benefit least from the construction of the dam. Additionally, if a foreign company owns the dam or the government subsidises the cost of electricity to businesses, then the funds from electricity production do not benefit the residents of the country the dam is built in. So, in the end, the dams can benefit a country economically, but the varying factors related to its construction and how these are dealt with, determine the level of benefit, if any, of the dam. Some of the theories or practices used to evaluate the potential value of a dam include cost-benefit analysis, environmental impacts assessments and regressions. Systems analysis is also a useful method. While these theories have value, there are also possible shortcomings. Cost-benefit analysis converts all the costs and benefits to dollar values, which can be problematic. Environmental impact assessments, likewise, can be incomplete, especially if the assessment does not include feedback effects, that is, they only consider the initial impact. Finally, regression analysis is dependent on the available data and again would not necessarily include feedbacks. Systems analysis is a method that can allow more complex modelling of the environment and the economic system. It would allow a clearer picture to emerge of the impacts and can include a long time frame.

Keywords: comparison, economics, environment, hydroelectric dams

Procedia PDF Downloads 197
3190 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 309
3189 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
3188 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis

Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa

Abstract:

Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.

Keywords: artificial intelligence, human resources, bibliometric analysis, research directions

Procedia PDF Downloads 97
3187 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment

Authors: Paul Lam, Kevin Wong, Chi Him Chan

Abstract:

Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.

Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function

Procedia PDF Downloads 103
3186 Comparison of White Sauce Prepared from Native and Chemically Modified Corn and Pearl Millet Starches

Authors: Marium Shaikh, Tahira M. Ali, Abid Hasnain

Abstract:

Physical and sensory properties of white sauces prepared from native and chemically modified corn and pearl millet starches were compared. Interestingly, no syneresis was observed in hydroxypropylated corn and pearl millet starch containing white sauce even after nine days of cold storage (4 °C), while other modifications also reduced the syneresis significantly in comparison to their native counterparts. White sauce containing succinylated corn starch showed least oil separation due to its greater emulsion stability. Light microscopy was used to visualize the size and shape of fat globules, and it was found that they were most homogenously distributed in succinylated and hydroxypropylated samples. Sensory results revealed that chemical modification of corn and pearl millet starch improved the consistency, thickness and overall acceptability of white sauces. Viscosity profiles showed that pasting parameters of native pearl millet starch are almost similar to native corn starch suggesting pearl millet starch as an alternative of corn starch. Also, white sauce prepared from modified pearl millet starch showed better cold storage stability in terms of various textural attributes like hardness, cohesiveness, chewiness, and springiness.

Keywords: corn starch, pearl millet, hydroxypropylation, succinylation, white sauce

Procedia PDF Downloads 285
3185 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital

Authors: A. Wahid Uddin

Abstract:

Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.

Keywords: dilator, induction, labour, osmotic

Procedia PDF Downloads 138
3184 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 117
3183 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93
3182 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
3181 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 196
3180 Extraction of Inulin from Cichorium Intybus and Its Application as Fat Replacer in Yoghurt

Authors: Hafiz Khuram Wasim Aslam, Muhammad Saeed, Azam Shakeel, Muhammad Inam Ur Raheem, Moazzam Rafiq Khan, Muhammad Atif Randhawa

Abstract:

Inulin is significant ingredient used in food industry that functions technologically as a fat replacer often without compromising taste and texture. In this study inulin was extracted from the chicory roots and the effect of inulin addition as a fat replacer on the physiochemical, microbiological and sensory properties of non-fat yogurt was investigated. The supplementation of chicory inulin reduced the magnitude of firmness in comparison with non-inulin ¬supplemented non-fat yoghurt. Higher values of acidity were observed due to the more microbial fermentation in the inulin containing yogurt as compared to non-inulin yogurt and were in the range of 0.56 to 0.75 during storage days. Syneresis in control sample increased from 43.9% to 47.9% during the storage study. However inulin addition at different treatment enhanced syneresis from 44.5% to 47.6%. Inulin addition at various concentrations caused an increase in the TPC due to its probiotic effect. No effects of inuline addition on fat and protein contents were observed. Non-fat yoghurt supplemented with inulin demonstrated sensory behavior better than that of the control yoghurt. The most important effect of the addition of inulin to non-fat yoghurt is an increase in the sensory attributes appearance, body and texture, taste and mouth feel, overall acceptability. On an average, yoghurt supplemented with 1 to 2% inulin was better in overall acceptance as compared to control yoghurt.

Keywords: inulin, fat replacer, yoghurt, sensory evaluation, low fat

Procedia PDF Downloads 592
3179 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 302
3178 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 248
3177 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management

Procedia PDF Downloads 248
3176 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 101
3175 Administrators' Information Management Capacity and Decision-Making Effectiveness on Staff Promotion in the Teaching Service Commissions in South – West, Nigeria

Authors: Olatunji Sabitu Alimi

Abstract:

This study investigated the extent to which administrators’ information storage, retrieval and processing capacities influence decisions on staff promotion in the Teaching Service Commissions (TESCOMs) in The South-West, Nigeria. One research question and two research hypotheses were formulated and tested respectively at 0.05 level of significance. The study used the descriptive research of the survey type. One hundred (100) staff on salary grade level 09 constituted the sample. Multi- stage, stratified and simple random sampling techniques were used to select 100 staff from the TESCOMs in The South-West, Nigeria. Two questionnaires titled Administrators’ Information Storage, Retrieval and Processing Capacities (AISRPC), and Staff Promotion Effectiveness (SPE) were used for data collection. The inventory was validated and subjected to test-re-test and reliability coefficient of r = 0.79 was obtained. The data were collected and analyzed using Pearson Product Moment Correlation coefficient and simple percentage. The study found that Administrators at TESCOM stored their information in files, hard copies, soft copies, open registry and departmentally in varying degrees while they also processed information manually and through electronics for decision making. In addition, there is a significant relationship between administrators’ information storage and retrieval capacities in the TESCOMs in South – West, Nigeria, (r cal = 0.598 > r table = 0.195). Furthermore, administrators’ information processing capacity and staff promotion effectiveness were found to be significantly related (r cal = 0.209 > r table = 0.195 at 0.05 level of significance). The study recommended that training, seminars, workshops should be organized for administrators on information management, while educational organizations should provide Information Management Technology (ICT) equipment for the administrators in the TESCOMs. The staff of TESCOM should be promoted having satisfied the promotion criteria such as spending required number of years on a grade level, a clean record of service and vacancy.

Keywords: information processing capacity, staff promotion effectiveness, teaching service commission, Nigeria

Procedia PDF Downloads 533