Search results for: EB thermal processing
5665 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 3485664 Testing the Limits of NPI Constraints: ERP and Oscillatory Evidence from 'zenme' (no matter what) in Mandarin Chinese
Authors: Lingda Kong
Abstract:
Most research has predominantly focused on the processing of NPIs in non-veridical contexts, much less is known about how the [+Negation] constraint of NPIs functions in veridical contexts where truth conditions are explicitly asserted. This study aimed to investigate whether and how discourse context modulates the [+Negation] constraint during the processing of the Mandarin Chinese NPI ‘zenme’ (no matter what) in veridical contexts. Using a 2 × 2 design (Polarity: affirmative vs. Negative; Contextual congruency: congruent vs. incongruent), EEG data were recorded from 37 native Chinese speakers as they read compound sentences containing ‘zenme’ (no matter what). The results revealed a distinct ERP pattern at different sentence positions: At the critical word “dounenggou” (can), affirmative conditions elicited reduced posterior positivity (480-584ms) compared to negative conditions, reflecting rapid detection of polarity features. At sentence-final positions, a significant interaction was observed between polarity and contextual congruency in the N400 time window (366-488ms), with polarity differences only evident in incongruent contexts. The N400 effect suggests that mismatches between expected polarity and contextual information require additional processing effort, which becomes evident in incongruent conditions. Additionally, a Late Negative Network effect (422-800ms) was observed in the right hemisphere, where incongruent contexts elicited greater negativity than congruent contexts, reflecting the brain’s increased effort to resolve contradictions. Time-frequency analyses revealed increased power in the theta band (4-7Hz, 600-800ms) and alpha band (8-12Hz, 850-1000ms) for incongruent versus congruent conditions. In the beta band (17-24Hz, 700-950ms), affirmative-incongruent conditions elicited greater power than affirmative-congruent conditions, further confirming the involvement of higher cognitive processes in resolving polarity mismatches. These findings suggest that the processing of ‘zenme’ (no matter what) involves dynamic interactions between structural constraints and discourse context. While initial processing stages are sensitive to polarity violations, later stages integrate contextual information, particularly in veridical environments. This temporal progression from structure-based to context-driven processing extends existing models of NPI processing by revealing how discourse context modulates formal licensing requirements under explicitly asserted truth conditions. These results offer new insights into the cognitive mechanisms underlying polarity-sensitive items in Mandarin Chinese and their interaction with discourse-level constraints.Keywords: NPI processing, ERP, polarity sensitivity, discourse context
Procedia PDF Downloads 45663 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste
Authors: David Holton, Michelle Dickinson, Giovanni Carta
Abstract:
The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel
Procedia PDF Downloads 2915662 A Process for Prevention of Browning in Fresh Cut Tender Jackfruit
Authors: Ramachandra Pradhan, Sandeep Singh Rama, Sabyasachi Mishra
Abstract:
Jackfruit (Artocarpus heterophyllus L.) in its tender form is consumed as a vegetable and popular for its flavour, colour and meat like texture. In South Asian countries like Bangladesh, India, Pakistan and Indonesia the market value for tender jackfruit is very high. However, due to lack of technology the marketing and transportation of the fruit is a challenge. The processing activities like washing, sorting, peeling and cutting enhances oxidative stress in fresh cut jackfruit. It is also having the ill effects on quality of fresh cut tender jackfruit by an increase in microbial contaminations, excessive tissue softening, and depletion of phytochemicals and browning. Hence, this study was conducted as a solution to the above problem. Fresh cut tender Jackfruit slices were processed by using the independent parameters such as concentration of CaCl2 (2-5%), concentration of citric acid (1-2.5%) and treatment time (4-10 min.) and the depended variables were Browning index (BI), colour change (ΔE), Firmness (F) and Overall all acceptability (OAA) after the treatment. From the response variables the best combination of independent variables was resulted as 3% concentration of CaCl2 and 2% concentration of citric acid for 6 minutes. At these optimised processing treatments, the browning can be prevented for fresh cut tender jackfruit. This technology can be used by the researcher, scientists, industries, etc. for further processing of tender jackfruit.Keywords: tender jackfruit, browning index, firmness, texture
Procedia PDF Downloads 2605661 Thermal Annealing Effects on Minority Carrier Lifetime in GaInAsSb/GaSb by Means of Photothermal Defletion Technique
Authors: Souha Bouagila, Soufiene Ilahi
Abstract:
Photothermal deflection technique PTD have been employed to study the impact of thermal annealing on minority carrier in GaInAsSb grown on GaSb substarte, which used as an active layer for Vertical Cavity Surface Emitting laser (VCSEL). Photothermal defelction technique is nondescructive and accurate technique for electronics parameters determination. The measure of non-radiative recombination, electronic diffusivity, surface and interface recombination are effectuated by fitting the theoretical PTD signal to the experimental ones. As a results, we have found that Non-radiative lifetime increases from 3.8 µs (± 3, 9 %) for not annealed GaInAsSb to the 7.1 µs (± 5, 7%). In fact, electronic diffusivity D increased from 60.1 (± 3.9 %) to 89.6 cm2 / s (± 2.7%) for the as grown to that annealed for 60 min respectively. We have remarked that surface recombination velocity (SRV) decreases from 7963 m / s (± 6.3%) to 1450 m / s (± 3.6).Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, Surface and interface recombination velocity.GaInAsSb active layer
Procedia PDF Downloads 705660 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites
Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze
Abstract:
Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering
Procedia PDF Downloads 3785659 Status of Sensory Profile Score among Children with Autism in Selected Centers of Dhaka City
Authors: Nupur A. D., Miah M. S., Moniruzzaman S. K.
Abstract:
Autism is a neurobiological disorder that affects physical, social, and language skills of a person. A child with autism feels difficulty for processing, integrating, and responding to sensory stimuli. Current estimates have shown that 45% to 96 % of children with Autism Spectrum Disorder demonstrate sensory difficulties. As autism is a worldwide burning issue, it has become a highly prioritized and important service provision in Bangladesh. The sensory deficit does not only hamper the normal development of a child, it also hampers the learning process and functional independency. The purpose of this study was to find out the prevalence of sensory dysfunction among children with autism and recognize common patterns of sensory dysfunction. A cross-sectional study design was chosen to carry out this research work. This study enrolled eighty children with autism and their parents by using the systematic sampling method. In this study, data were collected through the Short Sensory Profile (SSP) assessment tool, which consists of 38 items in the questionnaire, and qualified graduate Occupational Therapists were directly involved in interviewing parents as well as observing child responses to sensory related activities of the children with autism from four selected autism centers in Dhaka, Bangladesh. All item analyses were conducted to identify items yielding or resulting in the highest reported sensory processing dysfunction among those children through using SSP and Statistical Package for Social Sciences (SPSS) version 21.0 for data analysis. This study revealed that almost 78.25% of children with autism had significant sensory processing dysfunction based on their sensory response to relevant activities. Under-responsive sensory seeking and auditory filtering were the least common problems among them. On the other hand, most of them (95%) represented that they had definite to probable differences in sensory processing, including under-response or sensory seeking, auditory filtering, and tactile sensitivity. Besides, the result also shows that the definite difference in sensory processing among 64 children was within 100%; it means those children with autism suffered from sensory difficulties, and thus it drew a great impact on the children’s Daily Living Activities (ADLs) as well as social interaction with others. Almost 95% of children with autism require intervention to overcome or normalize the problem. The result gives insight regarding types of sensory processing dysfunction to consider during diagnosis and ascertaining the treatment. So, early sensory problem identification is very important and thus will help to provide appropriate sensory input to minimize the maladaptive behavior and enhance to reach the normal range of adaptive behavior.Keywords: autism, sensory processing difficulties, sensory profile, occupational therapy
Procedia PDF Downloads 725658 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics
Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung
Abstract:
Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment
Procedia PDF Downloads 1715657 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material
Procedia PDF Downloads 3965656 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass
Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo
Abstract:
Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.Keywords: CFD analysis, ECC bypass, hydraulic form loss coefficient, system thermal-hydraulic code
Procedia PDF Downloads 2335655 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser
Procedia PDF Downloads 3535654 Titanium-Aluminium Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material.Keywords: titanium-aluminum oxide, plasma electrolytic oxidation, corrosion, wear, thermal property
Procedia PDF Downloads 3615653 Clean Gold Solution from Printed Circuit Board Physical Processing Dust by Selective Complexation
Authors: Iyiola O. Otunniyi, Oluwayimika O. Oluokun
Abstract:
The two-step leaching process of PCB dust will produce a first leaching stream containing assorted metals that still requires more demanding multistage processing afterward to recover base metals and precious metals. In this work, three-step selective complexations produce a clean gold solution from printed circuit board dust. After optimizing for temperature and concentrations, the first step under oxidative ammonia leaching recovered no gold, 90 % Cu and 50 % Zn. Second step acid leaching recovered no gold, 89 % Fe, 48 % Zn, 94 % Ni. The recoveries generally increased with reducing dust particle sizes, except for zinc under oxidative ammonia, and it was noted that its various alloy forms in PCB could be responsible for this. At the third leaching step using acidified thiourea with 0.1 M H₂O₂ at 25 OC, gold recovery was 99 %. The leaching rate was shown to be chemically controlled, implying that reagent dosage control will compensate for feed assay shifts in an operation design. Copper, zinc and nickel will be easily recoverable from leach solutions of the first two steps in this leaching scheme. The third step produced a clean gold solution for easy processing downstream.Keywords: gold thiourea complexation, printed circuit board, step leaching, selective recovery
Procedia PDF Downloads 185652 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company
Authors: Lokendra Kumar Devangan, Ajay Mishra
Abstract:
This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.Keywords: production planning, mixed integer optimization, network model, network optimization
Procedia PDF Downloads 755651 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach
Authors: Mohamed Nasraoui
Abstract:
Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.
Procedia PDF Downloads 1705650 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation
Authors: Manoj Kumar, Rajesh Kumar
Abstract:
With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources
Procedia PDF Downloads 4375649 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling
Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen
Abstract:
Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress
Procedia PDF Downloads 2005648 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity
Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien
Abstract:
This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.Keywords: CFD, experimental, mathematical models, parabolic trough, radiation
Procedia PDF Downloads 4265647 Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys
Authors: Catalin Croitoru, Ionut Claudiu Roata
Abstract:
Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications.Keywords: concentrated solar energy, sintering, corrosion resistance, surface properties
Procedia PDF Downloads 305646 Laser Based Microfabrication of a Microheater Chip for Cell Culture
Authors: Daniel Nieto, Ramiro Couceiro
Abstract:
Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.Keywords: laser microfabrication, microheater, bioengineering, cell culture
Procedia PDF Downloads 3005645 Honey Dressing versus Silver Sulfadiazine Dressing for Wound Healing in Second Degree Thermal Burn Patients
Authors: Syed Faizan Hassan Shah
Abstract:
Introduction: Burn injuries are among the most devastating of all injuries. Burns is the fourth most common type of trauma worldwide. Ap?proximately 90 percent of burns occur in low to middle-income countries. Nearly half a million Americans each year, with approximately 40,000 hospitalizations and 3,400 deaths annually, suffer burns. The survival rate for admitted burn patients has improved consistently over the past four decades, largely attributed to national decreases in burn size, improvements in burn critical care, and advancements in burn wound care. Objectives: The present study was conducted to compare the efficacy of Honey dressing versus Silver Sulfadiazine dressing for complete wound healing in the 2nd-degree thermal burn. Study Design: A Randomized controlled trial was carried out in the Department of General Surgery/burn unit of Ayub Teaching Hospital Abbottabad from July to December 2018. The study population included thermal burn patients presenting with ASA-I, ASA-II, and body surface area less than 50% of the age group above 12 to 60 years of either gender. All the patients were randomly divided into two equal groups of patients by blocked randomization using permuted block g 6. In group ‘A,’ patients underwent dressing by honey method, and patients in group ‘B’ had silver sulfadiazine dressing. The dressing was changed every 48 hours by a senior sur?geon, and the condition of the wound was observed. Time duration till complete wound healing was noted in the Proforma. Results: A total of 100 patients were selected and divided into two groups of 50 patients in each two groups. The mean age of the patients was 27.66±13.388 ran?ging from 12 to 60 years of age, and the mean duration of complete healing of wound in days was 20.20±6.251, ranging from 2 to 30 days. Mean comparison of age with both groups, age of the patients was 21.24±3.761 (n=50) in group ‘A,’ i.e., honey dressing, and 19.16±7.911 (n=50) was in group ‘B,’ i.e., silver sulfadiazine dressing. Efficacy in the honey dressing group was found effective in 48(75.0%) and ineffect? ive in 2(5.6%) out of 50 patients. Efficacy in silver sulfadiazine dressing group 16(25.0%) was three found effective and in 34(94.4%) was inef?fective out of 50 patients. There was a statistically significant difference between both groups. (P=0.000) . Conclusion: honey dressing is more effective as compared to silver sulfadiazine dressing in terms of complete wound healing in second-degree thermal burn patients; our study also concluded the same.Keywords: efficacy, honey dressing, silver sulfadiazine dressing, wound healing
Procedia PDF Downloads 1115644 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 885643 Localization of Pyrolysis and Burning of Ground Forest Fires
Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov
Abstract:
This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.Keywords: forest fire, barrier water lines, pyrolysis front, flame front
Procedia PDF Downloads 1405642 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 785641 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method
Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak
Abstract:
In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage
Procedia PDF Downloads 855640 Preparation of Electrospun PLA/ENR Fibers
Authors: Jaqueline G. L. Cosme, Paulo H. S. Picciani, Regina C. R. Nunes
Abstract:
Electrospinning is a technique for the fabrication of nanoscale fibers. The general electrospinning system consists of a syringe filled with polymer solution, a syringe pump, a high voltage source and a grounded counter electrode. During electrospinning a volumetric flow is set by the syringe pump and an electric voltage is applied. This forms an electric potential between the needle and the counter electrode (collector plate), which results in the formation of a Taylor cone and the jet. The jet is moved towards the lower potential, the counter electrode, wherein the solvent of the polymer solution is evaporated and the polymer fiber is formed. On the way to the counter electrode, the fiber is accelerated by the electric field. The bending instabilities that occur form a helical loop movements of the jet, which result from the coulomb repulsion of the surface charge. Trough bending instabilities the jet is stretched, so that the fiber diameter decreases. In this study, a thermoplastic/elastomeric binary blend of non-vulcanized epoxidized natural rubber (ENR) and poly(latic acid) (PLA) was electrospun using polymer solutions consisting of varying proportions of PCL and NR. Specifically, 15% (w/v) PLA/ENR solutions were prepared in /chloroform at proportions of 5, 10, 25, and 50% (w/w). The morphological and thermal properties of the electrospun mats were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry analysis. The SEM images demonstrated the production of micrometer- and sub-micrometer-sized fibers with no bead formation. The blend miscibility was evaluated by thermal analysis, which showed that blending did not improve the thermal stability of the systems.Keywords: epoxidized natural rubber, poly(latic acid), electrospinning, chemistry
Procedia PDF Downloads 4145639 Reduce the Fire Hazards of Epoxy Resin by a Zinc Stannate and Graphene Hybrids
Authors: Haibo Sheng, Yuan Hu
Abstract:
Spinel structure Zinc stannate (Zn2SnO4, ZS)/Graphene was successfully synthesized by a simple in situ hydrothermal route. Morphological study and structure analysis confirmed the homogenously loading of ZS on the graphene sheets. Then, the resulted ZS/graphene hybrids were incorporated into epoxy resin to form EP/ZS/graphene composites by a solvent dispersion method. Improved thermal stability was investigated by Thermogravimetric Analysis (TGA). Cone calorimeter result showed low peak heat release rate (PHRR). Toxical gases release during combustion was evaluated by a facile device organized in our lab. The results showed that the release of NOx, HCN decrease of about 55%. Also, TG-IR technology was used to investigate the gas release during the EP decomposition process. The CO release had decreased about 80%.The EP/G/ZS showed lowest hazards during combustion (including flame retardancy, thermal stability, lower toxical gases release and so on) than pure EP.Keywords: fire hazards, zinc stannate, epoxy resin, toxical gas hazards
Procedia PDF Downloads 1865638 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1295637 Stabilizing Additively Manufactured Superalloys at High Temperatures
Authors: Keivan Davami, Michael Munther, Lloyd Hackel
Abstract:
The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.Keywords: laser shock peening, mechanical properties, indentation, high temperature stability
Procedia PDF Downloads 1565636 Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness
Authors: Abbas Hadj Abbas, Hacini Massaoud, Aiad Lahcen
Abstract:
In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study.Keywords: wastes treatment, the oil pollution, the norms, wastes drilling
Procedia PDF Downloads 299