Search results for: levels of knowledge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14018

Search results for: levels of knowledge

38 Ensemble Sampler For Infinite-Dimensional Inverse Problems

Authors: Jeremie Coullon, Robert J. Webber

Abstract:

We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.

Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction

Procedia PDF Downloads 152
37 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions

Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann

Abstract:

Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.

Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination

Procedia PDF Downloads 433
36 Case Report: Ocular Helminth - In Unusual Site (Lens)

Authors: Chandra Shekhar Majumder, Md. Shamsul Haque, Khondaker Anower Hossain, Md. Rafiqul Islam

Abstract:

Introduction: Ocular helminths are parasites that infect the eye or its adnexa. They can be either motile worms or sessile worms that form cysts. These parasites require two hosts for their life cycle, a definite host (usually a human) and an intermediate host (usually an insect). While there have been reports of ocular helminths infecting various structures of the eye, including the anterior chamber and subconjunctival space, there is no previous record of such a case involving the lens. Research Aim: The aim of this case report is to present a rare case of ocular helminth infection in the lens and to contribute to the understanding of this unusual site of infection. Methodology: This study is a case report, presenting the details and findings of an 80-year-old retired policeman who presented with severe pain, redness, and vision loss in the left eye. The patient had a history of diabetes mellitus and hypertension. The examination revealed the presence of a thread-like helminth in the lens. The patient underwent treatment and follow-up, and the helminth specimen was sent for identification to the department of Parasitology. Case report: An 80-year-old retired policeman attended the OPD, Faridpur Medical College Hospital with the complaints of severe pain, redness and gross dimness of vision of the left eye for 5 days. He had a history of diabetes mellitus and hypertension for 3 years. On examination, L/E visual acuity was PL only, moderate ciliary congestion, KP 2+, cells 2+ and posterior synechia from 5 to 7 O’clock position was found. Lens was opaque. A thread like helminth was found under the anterior of the lens. The worm was moving and changing its position during examination. On examination of R/E, visual acuity was 6/36 unaided, 6/18 with pinhole. There was lental opacity. Slit-lamp and fundus examination were within normal limit. Patient was admitted in Faridpur Medical College Hospital. Diabetes mellitus was controlled with insulin. ICCE with PI was done on the same day of admission under depomedrol coverage. The helminth was recovered from the lens. It was thread like, about 5 to 6 mm in length, 1 mm in width and pinkish in colour. The patient followed up after 7 days, VA was HM, mild ciliary congestion, few KPs and cells were present. Media was hazy due to vitreous opacity. The worm was sent to the department of Parasitology, NIPSOM, Dhaka for identification. Findings: The findings of this case report highlight the presence of a helminth in the lens, which has not been previously reported. The helminth was successfully removed from the lens, but the patient experienced complications such as anterior uveitis and vitreous opacity. The exact mechanism by which the helminth enters the lens remains unclear. Theoretical Importance: This case report contributes to the existing literature on ocular helminth infections by reporting a unique case involving the lens. It highlights the need for further research to understand the pathogenesis and mechanism of entry of helminths in the lens. Data Collection and Analysis Procedures: The data for this case report were collected through clinical examination and medical records of the patient. The findings were described and presented in a descriptive manner. No statistical analysis was conducted. Question Addressed: This case report addresses the question of whether ocular helminth infections can occur in the lens, which has not been previously reported. Conclusion: To the best of our knowledge, this is the first reported case of ocular helminth infection in the lens. The presence of the helminth in the lens raises interesting questions regarding its pathogenesis and entry mechanism. Further study and research are needed to explore these aspects. Ophthalmologists and parasitologists should be aware of the possibility of ocular helminth infections in unusual sites like the lens.

Keywords: ocular, helminth, unsual site, lens

Procedia PDF Downloads 63
35 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children

Authors: Aliya Kamilyevna Salahova

Abstract:

This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.

Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education

Procedia PDF Downloads 86
34 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 175
33 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications

Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara

Abstract:

Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.

Keywords: bone regeneration, chitosan, electrospinning, phosphorylation

Procedia PDF Downloads 218
32 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools

Authors: Todd H. Buxton, Yong G. Lai

Abstract:

Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.

Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment

Procedia PDF Downloads 63
31 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers

Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung

Abstract:

As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.

Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory

Procedia PDF Downloads 66
30 A Risk-Based Comprehensive Framework for the Assessment of the Security of Multi-Modal Transport Systems

Authors: Mireille Elhajj, Washington Ochieng, Deeph Chana

Abstract:

The challenges of the rapid growth in the demand for transport has traditionally been seen within the context of the problems of congestion, air quality, climate change, safety, and affordability. However, there are increasing threats including those related to crime such as cyber-attacks that threaten the security of the transport of people and goods. To the best of the authors’ knowledge, this paper presents for the first time, a comprehensive framework for the assessment of the current and future security issues of multi-modal transport systems. The approach or method proposed is based on a structured framework starting with a detailed specification of the transport asset map (transport system architecture), followed by the identification of vulnerabilities. The asset map and vulnerabilities are used to identify the various approaches for exploitation of the vulnerabilities, leading to the creation of a set of threat scenarios. The threat scenarios are then transformed into risks and their categories, and include insights for their mitigation. The consideration of the mitigation space is holistic and includes the formulation of appropriate policies and tactics and/or technical interventions. The quality of the framework is ensured through a structured and logical process that identifies the stakeholders, reviews the relevant documents including policies and identifies gaps, incorporates targeted surveys to augment the reviews, and uses subject matter experts for validation. The approach to categorising security risks is an extension of the current methods that are typically employed. Specifically, the partitioning of risks into either physical or cyber categories is too limited for developing mitigation policies and tactics/interventions for transport systems where an interplay between physical and cyber processes is very often the norm. This interplay is rapidly taking on increasing significance for security as the emergence of cyber-physical technologies, are shaping the future of all transport modes. Examples include: Connected Autonomous Vehicles (CAVs) in road transport; the European Rail Traffic Management System (ERTMS) in rail transport; Automatic Identification System (AIS) in maritime transport; advanced Communications, Navigation and Surveillance (CNS) technologies in air transport; and the Internet of Things (IoT). The framework adopts a risk categorisation scheme that considers risks as falling within the following threat→impact relationships: Physical→Physical, Cyber→Cyber, Cyber→Physical, and Physical→Cyber). Thus the framework enables a more complete risk picture to be developed for today’s transport systems and, more importantly, is readily extendable to account for emerging trends in the sector that will define future transport systems. The framework facilitates the audit and retro-fitting of mitigations in current transport operations and the analysis of security management options for the next generation of Transport enabling strategic aspirations such as systems with security-by-design and co-design of safety and security to be achieved. An initial application of the framework to transport systems has shown that intra-modal consideration of security measures is sub-optimal and that a holistic and multi-modal approach that also addresses the intersections/transition points of such networks is required as their vulnerability is high. This is in-line with traveler-centric transport service provision, widely accepted as the future of mobility services. In summary, a risk-based framework is proposed for use by the stakeholders to comprehensively and holistically assess the security of transport systems. It requires a detailed understanding of the transport architecture to enable a detailed vulnerabilities analysis to be undertaken, creates threat scenarios and transforms them into risks which form the basis for the formulation of interventions.

Keywords: mitigations, risk, transport, security, vulnerabilities

Procedia PDF Downloads 165
29 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 69
28 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water

Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard

Abstract:

Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.

Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment

Procedia PDF Downloads 119
27 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms

Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal

Abstract:

A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.

Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating

Procedia PDF Downloads 154
26 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star

Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu

Abstract:

The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).

Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership

Procedia PDF Downloads 238
25 Consecration from the Margins: El Anatsui in Venice and the Turbine Hall

Authors: Jonathan Adeyemi

Abstract:

Context: This study focuses on El Anatsui and his global acclaim in the art world despite his origins from the global artworld’s margins. It addresses the disparities in the treatment between Western and non-Western artists and questions whether Anatsui’s consecration is a result of exoticism or the growing consensus on decolonization. Research Aim: The aim of this study is to investigate how El Anatsui achieved global acclaim from the margins of the art world and determine if his consecration represents a mark of decolonization or the typical Western desire for exoticism. Methodology: The study utilizes a case study approach, literature analysis, and in-depth interviews. The artist, the organizers of the Venice Biennale, the relevant curators at Tate Modern London, and the October Gallery in London, and other galleries in Nigeria, which represent the artist were interviewed for data collection. Findings: The study seeks to determine the authenticity of the growing consensus on decolonization, inclusion, and diversity in the global artistic field. Preliminary findings show that domestic socio-economic and political factors debilitated the mechanisms for local validation in Nigeria, weakening the domestic foundation for international engagement. However, alternative systems of exhibition, especially in London and the USA contributed critically to providing the initial international visibility, which formed the foundation for his global acclaim. Out of the 21 winners of the Golden Lion for Lifetime Achievement since its inception at the 47th Venice Biennale in 1997, American artists have dominated with 10 recipients, 8 recipients from Europe, 2 recipients from Africa (2007 and 2015) and 1 from Asia. This aligns with Bourdieu’s concept of cultural and economic capital, which prevented Africa countries from participation until recently. Moreover, while the average age of recipients is 76 years, Anatsui received the award at the age of 71, while Malick Sidibé (Mali) was awarded at 72. Thus, the Venice Biennale award for El Anatsui incline more towards a commitment to decolonisation than exoticism. Theoretical Importance: This study contributes to the field by examining the dynamics of the art world's monopoly of legitimation and the role of national, ethnicity and cultural differences in the promotion of artists. It aims to challenge the Westernized hierarchy of valorization and consecration in the art world. The research supports Bourdieu’s artistic field theory, which emphasises the importance of cultural, economic and social capital in determining agents’ position and access to the field resources (symbolic capital). Bourdieu also established that dominated agents can change their position in the field’s hierarchy either by establishing or navigating alternative systems. Data Collection and Analysis Procedures: The opacity of art world’s operations places the required information within the purview of the insiders (agents). Thus, the study collects data through in-depth interviews with relevant and purposively selected individuals and organizations. The data was/will be analyzed using qualitative methods, such as thematic analysis and content analysis. The interpretive analytical approach adopted facilitated the construction of meanings that may not be apparent in the data or responses. Questions Addressed: The study addresses how El Anatsui achieved global acclaim despite being from the margins, whether his consecration represents decolonization or exoticism, and the extent to which the global artistic field embraces decolonization, inclusion, and diversity. Conclusion: The study will contribute to knowledge by providing insights into the extent of commitment to decolonization, inclusion, and diversity in the global artistic field. It also shed light on the mechanisms behind El Anatsui's rise to global acclaim and challenge Western-dominated artistic hierarchies.

Keywords: decolonisation, exorticism, artistic field, culture game

Procedia PDF Downloads 59
24 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 218
23 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia

Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure

Abstract:

Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.

Keywords: adaptation, cultural landscape, drought, extremes indices

Procedia PDF Downloads 24
22 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 360
21 A Systematic Review Of Literature On The Importance Of Cultural Humility In Providing Optimal Palliative Care For All Persons

Authors: Roseanne Sharon Borromeo, Mariana Carvalho, Mariia Karizhenskaia

Abstract:

Healthcare providers need to comprehend cultural diversity for optimal patient-centered care, especially near the end of life. Although a universal method for navigating cultural differences would be ideal, culture’s high complexity makes this strategy impossible. Adding cultural humility, a process of self-reflection to understand personal and systemic biases and humbly acknowledging oneself as a learner when it comes to understanding another's experience leads to a meaningful process in palliative care generating respectful, honest, and trustworthy relationships. This study is a systematic review of the literature on cultural humility in palliative care research and best practices. Race, religion, language, values, and beliefs can affect an individual’s access to palliative care, underscoring the importance of culture in palliative care. Cultural influences affect end-of-life care perceptions, impacting bereavement rituals, decision-making, and attitudes toward death. Cultural factors affecting the delivery of care identified in a scoping review of Canadian literature include cultural competency, cultural sensitivity, and cultural accessibility. As the different parts of the world become exponentially diverse and multicultural, healthcare providers have been encouraged to give culturally competent care at the bedside. Therefore, many organizations have made cultural competence training required to expose professionals to the special needs and vulnerability of diverse populations. Cultural competence is easily standardized, taught, and implemented; however, this theoretically finite form of knowledge can dangerously lead to false assumptions or stereotyping, generating poor communication, loss of bonds and trust, and poor healthcare provider-patient relationship. In contrast, Cultural humility is a dynamic process that includes self-reflection, personal critique, and growth, allowing healthcare providers to respond to these differences with an open mind, curiosity, and awareness that one is never truly a “cultural” expert and requires life-long learning to overcome common biases and ingrained societal influences. Cultural humility concepts include self-awareness and power imbalances. While being culturally competent requires being skilled and knowledgeable in one’s culture, being culturally humble involves the sometimes-uncomfortable position of healthcare providers as students of the patient. Incorporating cultural humility emphasizes the need to approach end-of-life care with openness and responsiveness to various cultural perspectives. Thus, healthcare workers need to embrace lifelong learning in individual beliefs and values on suffering, death, and dying. There have been different approaches to this as well. Some adopt strategies for cultural humility, addressing conflicts and challenges through relational and health system approaches. In practice and research, clinicians and researchers must embrace cultural humility to advance palliative care practices, using qualitative methods to capture culturally nuanced experiences. Cultural diversity significantly impacts patient-centered care, particularly in end-of-life contexts. Cultural factors also shape end-of-life perceptions, impacting rituals, decision-making, and attitudes toward death. Cultural humility encourages openness and acknowledges the limitations of expertise in one’s culture. A consistent self-awareness and a desire to understand patients’ beliefs drive the practice of cultural humility. This dynamic process requires practitioners to learn continuously, fostering empathy and understanding. Cultural humility enhances palliative care, ensuring it resonates genuinely across cultural backgrounds and enriches patient-provider interactions.

Keywords: cultural competency, cultural diversity, cultural humility, palliative care, self-awareness

Procedia PDF Downloads 61
20 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben

Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin

Abstract:

The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.

Keywords: Kolhan basin, petrology, sandstone, tectonics

Procedia PDF Downloads 501
19 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 27
18 Development Programmes Requirements for Managing and Supporting the Ever-Dynamic Job Roles of Middle Managers in Higher Education Institutions: The Espousal Demanded from Human Resources Department; Case Studies of a New University in United Kingdom

Authors: Mohamed Sameer Mughal, Andrew D. Ross, Damian J. Fearon

Abstract:

Background: The fast-paced changing landscape of UK Higher Education Institution (HEIs) is poised by changes and challenges affecting Middle Managers (MM) in their job roles. MM contribute to the success of HEIs by balancing the equilibrium and pass organization strategies from senior staff towards operationalization directives to junior staff. However, this study showcased from the data analyzed during the semi structured interviews; MM job role is becoming more complex due to changes and challenges creating colossal pressures and workloads in day-to-day working. Current development programmes provisions by Human Resources (HR) departments in such HEIs are not feasible, applicable, and matching the true essence and requirements of MM who suggest that programmes offered by HR are too generic to suit their precise needs and require tailor made espousal to work effectively in their pertinent job roles. Methodologies: This study aims to capture demands of MM Development Needs (DN) by means of a conceptual model as conclusive part of the research that is divided into 2 phases. Phase 1 initiated by carrying out 2 pilot interviews with a retired Emeritus status professor and HR programmes development coordinator. Key themes from the pilot and literature review subsidized into formulation of 22 set of questions (Kvale and Brinkmann) in form of interviewing questionnaire during qualitative data collection. Data strategy and collection consisted of purposeful sampling of 12 semi structured interviews (n=12) lasting approximately an hour for all participants. The MM interviewed were at faculty and departmental levels which included; deans (n=2), head of departments (n=4), subject leaders (n=2), and lastly programme leaders (n=4). Participants recruitment was carried out via emails and snowballing technique. The interviews data was transcribed (verbatim) and managed using Computer Assisted Qualitative Data Analysis using Nvivo ver.11 software. Data was meticulously analyzed using Miles and Huberman inductive approach of positivistic style grounded theory, whereby key themes and categories emerged from the rich data collected. The data was precisely coded and classified into case studies (Robert Yin); with a main case study, sub cases (4 classes of MM) and embedded cases (12 individual MMs). Major Findings: An interim conceptual model emerged from analyzing the data with main concepts that included; key performance indicators (KPI’s), HEI effectiveness and outlook, practices, processes and procedures, support mechanisms, student events, rules, regulations and policies, career progression, reporting/accountability, changes and challenges, and lastly skills and attributes. Conclusion: Dynamic elements affecting MM includes; increase in government pressures, student numbers, irrelevant development programmes, bureaucratic structures, transparency and accountability, organization policies, skills sets… can only be confronted by employing structured development programmes originated by HR that are not provided generically. Future Work: Stage 2 (Quantitative method) of the study plans to validate the interim conceptual model externally through fully completed online survey questionnaire (Bram Oppenheim) from external HEIs (n=150). The total sample targeted is 1500 MM. Author contribution focuses on enhancing management theory and narrow the gap between by HR and MM development programme provision.

Keywords: development needs (DN), higher education institutions (HEIs), human resources (HR), middle managers (MM)

Procedia PDF Downloads 230
17 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities

Authors: Paul J. McKay

Abstract:

Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.

Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)

Procedia PDF Downloads 69
16 General Evaluation of a Three-Year Holistic Physical Activity Interventions Program in Qatar Campuses: Step into Health (SIH) in Campuses 2013- 2016

Authors: Daniela Salih Khidir, Mohamed G. Al Kuwari, Mercia V. Walt, Izzeldin J. Ibrahim

Abstract:

Background: University-based physical activity interventions aim to establish durable social patterns during the transition to adulthood. This study is a comprehensive evaluation of a 3-year intervention-based program to increase the culture of physical activity (PA) routine in Qatar campuses community, using a holistic approach. Methodology: General assessment methods: formative evaluation-SIH Campuses logic model design, stakeholders’ identification; process evaluation-members’ step counts analyze and qualitative Appreciative Inquiry session (4-D model); daily steps categorized as: ≤5,000, inactive; 5,000-7,499 low active; ≥7,500, physically active; outcome evaluation - records 3 years interventions. Holistic PA interventions methods: walking interventions - pedometers distributions and walking competitions for students and staff; educational interventions - in campuses implementation of bilingual educational materials, lectures, video related to PA in prevention of non-communicable diseases (NCD); articles published online; monthly emails and sms notifications for pedometer use; mass media campaign - radio advertising, yearly pre/post press releases; community stakeholders interventions-biyearly planning/reporting/achievements rewarding/ qualitative meetings; continuous follow-up communication, biweekly steps reports. Findings: Results formative evaluation - SIH in Campuses logic model identified the need of PA awareness and education within universities, resources, activities, health benefits, program continuity. Results process evaluation: walking interventions: Phase 1: 5 universities recruited, 2352 members, 3 months competition; Phase 2: 6 new universities recruited, 1328 members in addition, 4 months competition; Phase 3: 4 new universities recruited in addition, 1210 members, 6 months competition. Results phase 1 and 2: 1,299 members eligible for analyzes: 800 females (62%), 499 males (38%); 86% non-Qataris, 14% Qatari nationals, daily step count 5,681 steps, age groups 18–24 (n=841; 68%) students, 25–64; (n=458; 35.3%) staff; 38% - low active, 37% physically active and 25% inactive. The AI main themes engaging stakeholders: awareness/education - 5 points (100%); competition, multi levels of involvement in SIH, community-based program/motivation - 4 points each (80%). The AI points represent themes’ repetition within stakeholders’ discussions. Results education interventions: 2 videos implementation, 35 000 educational materials, 3 online articles, 11 walking benefits lectures, 40 emails and sms notifications. Results community stakeholders’ interventions: 6 stakeholders meetings, 3 rewarding gatherings, 1 focus meeting, 40 individual reports, 18 overall reports. Results mass media campaign: 1 radio campaign, 7 press releases, 52 campuses newsletters. Results outcome evaluation: overall 2013-2016, the study used: 1 logic model, 3 PA holistic interventions, partnerships 15 universities, registered 4890 students and staff (aged 18-64 years), engaged 30 campuses stakeholders and 14 internal stakeholders; Total registered population: 61.5% female (2999), 38.5% male (1891), 20.2% (988) Qatari nationals, 79.8% (3902) non-Qataris, 55.5% (2710) students aged 18 – 25 years, 44.5% (2180) staff aged 26 - 64 years. Overall campaign 1,558 members eligible for analyzes: daily step count 7,923; 37% - low active, 43% physically active and 20% inactive. Conclusion: The study outcomes confirm program effectiveness and engagement of young campuses community, specifically female, in PA. The authors recommend implementations of 'holistic PA intervention program approach in Qatar' aiming to impact the community at national level for PA guidelines achievement in support of NCD prevention.

Keywords: campuses, evaluation, Qatar, step-count

Procedia PDF Downloads 309
15 Improving Sanitation and Hygiene Using a Behavioral Change Approach in Public and Private Schools in Kampala, Uganda

Authors: G. Senoga, D. Nakimuli, B. Ndagire, B. Lukwago, D. Kyamagwa

Abstract:

Background: The COVID-19 epidemic affected the education sector, with some private schools closing while other children missed schooling for fear contracting COVID-19. Post COVID-19, PSIU in collaborated with Kampala City Council Authority Directorate of Education and Social Science, Water and Sanitation department, and Directorate of Public Health and Environment to improve sanitation and hygiene among pupils and staff in 50 public and private school system in Kampala city. The “Be Clean, Stay Healthy Campaign” used a behavioral change approach in educating, reinforcing and engaging learners on proper hand washing behaviors, proper toilet usage and garbage disposal. In April 2022, 40 Washa lots were constructed, to reduce the pupil - hand wash station ratio; distributed KCCA approved printed materials; oriented 50 teachers, WASH committees to execute and implement hygiene promotion. To ensure sustainability, WASH messages were memorized and practiced through hand washing songs, Pledge, prayer, Poems, Skits, Music, dance and drama, coupled with participatory, practical demonstrations using peer to peer approach, guest speakers at assemblies and in classes. This improved hygiene and sanitation practices. Premised on this, PSI conducted an end line assessment to explore the impact of a hand washing campaign in regards to improvements in hand washing practices and hand hygiene among pupils, accessibility, functionality and usage of the constructed hygiene and sanitation facilities. Method: A cross-sectional post intervention assessment using a mixed methods approach, targeting headteachers, wash committee members and pupils less <17 years was used. Quantitative approaches with a mix of open-ended questions were used in purposively selected respondents in 50 schools. Primary three to primary seven pupils were randomly selected, data was analyzed using the Statistical Package for Social Scientists (SPSS) Outcomes and Findings: 46,989 pupils (51% female), 1,127 and 524 teaching and non-teaching staff were reached by the intervention, respectively. 96% of schools trained on sanitation, sustainable water usage and hygiene constituted 17-man school WASH committees with teacher, parents and pupils representatives. (31%) of the WASH committees developed workplans, (78%) held WASH meetings monthly. This resulted into improved sanitation, water usage, waste management, proper use of toilets, and improved pupils’ health with reduced occurrences of stomach upsets, diarrhoea initially attributed to improper use of latrines and general waste management. Teachers reported reduced number of school absenteeism due to improved hygiene and general waste management at school, especially proper management of sanitary pads. School administrations response rate in purchase of hygiene equipment’s and detergents like soap improved. Regular WASH meetings in classes, teachers and community supervision ensured WASH facilities are used appropriately. Conclusion and Recommendations: Practical behaviour change innovations improves pupil’s knowledge and understanding of hygiene messages and usage. Over 70% of pupils had clear recall of key WASH Messages. There is need for continuous water flow in the Washa lots, harvesting rain water would reduce water bills while complementing National water supply coupled with increasing on Washa lots in densely populated schools.

Keywords: handwashing, hygyiene, sanitation, behaviour change

Procedia PDF Downloads 89
14 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories

Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez

Abstract:

The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.

Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture

Procedia PDF Downloads 27
13 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 121
12 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 113
11 Beyond Bindis, Bhajis, Bangles, and Bhangra: Exploring Multiculturalism in Southwest England Primary Schools, Early Research Findings

Authors: Suparna Bagchi

Abstract:

Education as a discipline will probably be shaped by the importance it places on a conceptual, curricular, and pedagogical need to shift the emphasis toward transformative classrooms working for positive change through cultural diversity. Awareness of cultural diversity and race equality has heightened following George Floyd’s killing in the USA in 2020. This increasing awareness is particularly relevant in areas of historically low ethnic diversity which have lately experienced a rise in ethnic minority populations and where inclusive growth is a challenge. This research study aims to explore the perspectives of practitioners, students, and parents towards multiculturalism in four South West England primary schools. A qualitative case study methodology has been adopted framed by sociocultural theory. Data were collected through virtually conducted semi-structured interviews with school practitioners and parents, observation of students’ classroom activities, and documentary analysis of classroom displays. Although one-third of the school population includes ethnically diverse children, BAME (Black, Asian, and Minority Ethnic) characters featured in children's books published in Britain in 2019 were almost invisible, let alone a BAME main character. The Office for Standards in Education, Children's Services and Skills (Ofsted) are vocal about extending the Curriculum beyond the academic and technical arenas for pupils’ broader development and creation of an understanding and appreciation of cultural diversity. However, race equality and community cohesion which could help in the students’ broader development are not Ofsted’s school inspection criteria. The absence of culturally diverse content in the school curriculum highlighted by the 1985 Swann Report and 2007 Ajegbo Report makes England’s National Curriculum look like a Brexit policy three decades before Brexit. A revised National Curriculum may be the starting point with the teachers as curriculum framers playing a significant part. The task design is crucial where teachers can place equal importance on the interwoven elements of “how”, “what” and “why” the task is taught. Teachers need to build confidence in encouraging difficult conversations around racism, fear, indifference, and ignorance breaking the stereotypical barriers, thus helping to create students’ conception of a multicultural Britain. Research showed that trainee teachers in predominantly White areas often exhibit confined perspectives while educating children. Irrespective of the geographical location, school teachers can be equipped with culturally responsive initial and continuous professional development necessary to impart multicultural education. This may aid in the reduction of employees’ unconscious bias. This becomes distinctly pertinent to avoid horrific cases in the future like the recent one in Hackney where a Black teenager was strip-searched during period wrongly suspected of cannabis possession. Early research findings show participants’ eagerness for more ethnic diversity content incorporated in teaching and learning. However, schools are considerably dependent on the knowledge-focused Primary National Curriculum in England. Moreover, they handle issues around the intersectionality of disability, poverty, and gender. Teachers were trained in times when foregrounding ethnicity matters was not happening. Therefore, preoccupied with Curriculum requirements, intersectionality issues, and teacher preparations, schools exhibit an incapacity due to which keeping momentum on ethnic diversity is somewhat endangered.

Keywords: case study, curriculum decolonisation, inclusive education, multiculturalism, qualitative research in Covid19 times

Procedia PDF Downloads 113
10 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 167
9 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 67