Search results for: dynamic power transmission system studies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33009

Search results for: dynamic power transmission system studies

19179 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 66
19178 Advanced Digital Manufacturing: Case Study

Authors: Abdelrahman Abdelazim

Abstract:

Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.

Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing

Procedia PDF Downloads 762
19177 Recognition of Voice Commands of Mentor Robot in Noisy Environment Using Hidden Markov Model

Authors: Khenfer Koummich Fatma, Hendel Fatiha, Mesbahi Larbi

Abstract:

This paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a human-machine interface with a voice recognition system that allows the operator to teleoperate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands pronounced in two languages: French and Arabic. The obtained recognition rate is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equals 30 dB, in this case; the Arabic speech recognition rate is 69%, and the French speech recognition rate is 80%. This can be explained by the ability of phonetic context of each speech when the noise is added.

Keywords: Arabic speech recognition, Hidden Markov Model (HMM), HTK, noise, TIMIT, voice command

Procedia PDF Downloads 358
19176 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 323
19175 The Effects of “Never Pressure Injury” on the Incidence of Pressure Injuries in Critically Ill Patients

Authors: Nuchjaree Kidjawan, Orapan Thosingha, Pawinee Vaipatama, Prakrankiat Youngkong, Sirinapha Malangputhong, Kitti Thamrongaphichartkul, Phatcharaporn Phetcharat

Abstract:

NPI uses technology sensorization of things and processed by AI system. The main features are an individual interface pressure sensor system in contact with the mattress and a position management system where the sensor detects the determined pressure with automatic pressure reduction and distribution. The role of NPI is to monitor, identify the risk and manage the interface pressure automatically when the determined pressure is detected. This study aims to evaluate the effects of “Never Pressure Injury (NPI),” an innovative mattress, on the incidence of pressure injuries in critically ill patients. An observational case-control study was employed to compare the incidence of pressure injury between the case and the control group. The control group comprised 80 critically ill patients admitted to a critical care unit of Phyathai3 Hospital, receiving standard care with the use of memory foam according to intensive care unit guidelines. The case group comprised 80 critically ill patients receiving standard care and with the use of the Never Pressure Injury (NPI) innovation mattress. The patients who were over 20 years old and showed scores of less than 18 on the Risk Assessment Pressure Ulcer Scale – ICU and stayed in ICU for more than 24 hours were selected for the study. The patients’ skin was assessed for the occurrence of pressure injury once a day for five consecutive days or until the patients were discharged from ICU. The sample comprised 160 patients with ages ranging from 30-102 (mean = 70.1 years), and the Body Mass Index ranged from 13.69- 49.01 (mean = 24.63). The case and the control group were not different in their sex, age, Body Mass Index, Pressure Ulcer Risk Scores, and length of ICU stay. Twenty-two patients (27.5%) in the control group had pressure injuries, while no pressure injury was found in the case group.

Keywords: pressure injury, never pressure injury, innovation mattress, critically ill patients, prevent pressure injury

Procedia PDF Downloads 98
19174 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 584
19173 The Results of Reading Test on Movement Staff Notation System

Authors: Sonay Ödemiş

Abstract:

Movement Staff Notation System (MSNS) is a movement transcription, analyzing method, and it's been constantly improved since it was first developed in 2005. This method is based on human anatomy, is being used and applied in the lessons at The Department of Turkish Folk Dances in Istanbul Technical University, nowadays. In this research, it is aimed to discover, how MSNS can help to participants about learning the basic movements of lower extremity. This experiment has six volunteers who were randomly selected. Each volunteer has been graded for their dance backgrounds and all the volunteers have been studied for six weeks. Each week has included different topic and examples such as contacts on foot, jumps, timing, directions and basic symbols of MSNS. Examples have changed from easy to hard. On conclusion, 6 volunteer subjects were tested in final test. The tests were recorded with the camera. In this presentation, it will be explained and detailed the results of the reading test on MSNS. Some of important video records will be watched and interpreted after the test. As a conclusion, all the scores will be interpreted and assessed from different perspectives.

Keywords: dance notation, Turkish dances, reading test, Education

Procedia PDF Downloads 224
19172 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements

Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor

Abstract:

This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.

Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy

Procedia PDF Downloads 47
19171 Influence of Extractives Leaching from Larch Wood on Durability of Semi-Transparent Oil-Based Coating during Accelerated Weathering

Authors: O. Dvorak, M. Panek, E. Oberhofnerova, I. Sterbova

Abstract:

Extractives contained in larch wood (Larix decidua, Mill.) reduce the service-life of exterior coating systems, especially transparent and semi-transparent. The aim of this work was to find out whether the initial several-week leaching of extractives from untreated wood in the exterior will positively affect the selected characteristics and the overall life of the semi-transparent oil-based coating. Samples exposed to exterior leaching for 10 or 20 weeks, and the reference samples without leaching were then treated with a coating system. Testing was performed by the method of artificial accelerated weathering in the UV chamber combined with thermal cycling during 6 weeks. The changes of colour, gloss, surface wetting, microscopic analyses of surfaces, and visual damage of paint were evaluated. Only 20-week initial leaching had a positive effect. Both to increase the color stability during aging, but also to slightly increase the overall life of the tested semi-transparent coating system on larch wood.

Keywords: larch wood, coating, durability. extractives

Procedia PDF Downloads 120
19170 Numerical Investigation on Anchored Sheet Pile Quay Wall with Separated Relieving Platform

Authors: Mahmoud Roushdy, Mohamed El Naggar, Ahmed Yehia Abdelaziz

Abstract:

Anchored sheet pile has been used worldwide as front quay walls for decades. With the increase in vessel drafts and weights, those sheet pile walls need to be upgraded by increasing the depth of the dredging line in front of the wall. A system has recently been used to increase the depth in front of the wall by installing a separated platform supported on a deep foundation (so called Relieving Platform) behind the sheet pile wall. The platform is structurally separated from the front wall. This paper presents a numerical investigation utilizing finite element analysis on the behavior of separated relieve platforms installed within existing anchored sheet pile quay walls. The investigation was done in two steps: a verification step followed by a parametric study. In the verification step, the numerical model was verified based on field measurements performed by others. The validated model was extended within the parametric study to a series of models with different backfill soils, separation gap width, and number of pile rows supporting the platform. The results of the numerical investigation show that using stiff clay as backfill soil (neglecting consolidation) gives better performance for the front wall and the first pile row adjacent to sandy backfills. The degree of compaction of the sandy backfill slightly increases lateral deformations but reduces bending moment acting on pile rows, while the effect is minor on the front wall. In addition, the increase in the separation gap width gradually increases bending moments on the front wall regardless of the backfill soil type, while this effect is reversed on pile rows (gradually decrease). Finally, the paper studies the possibility of reducing the number of pile rows along with the separation to take advantage of the positive separation effect on piles.

Keywords: anchored sheet pile, relieving platform, separation gap, upgrade quay wall

Procedia PDF Downloads 76
19169 Ozone Therapy and Pulsed Electromagnetic Fields Interplay in Controlling Tumor Growth, Symptom and Pain Management: A Case Report

Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, F. Sartori Thies, I. F. Minello, F. dos Santos de Oliveira

Abstract:

Background: The immune system has evolved several mechanisms to protect the host against cancer, and it has now been suggested that the expansion of its functions may prevent tumor growth and control the symptoms of cancer patients. Two techniques, ozone therapy and pulsed electromagnetic fields (PEMF), are independently associated with an increase in the immune system functions and they maybe help palliative care of patients in these conditions. Case Report: A patient with rectal adenocarcinoma with metastases decides to interrupt the clinical chemotherapy protocol due to refractoriness and side effects. As a palliative care alternative treatment it is suggested to the patient the use of ozone therapy associated with PEMF techniques. Results: The patient reports an improvement in well-being, in autonomy and in pain control. Imaging tests confirm a pause in tumor growth despite more than 60 days without using classic treatment. These results associated with palliative care alternative treatment stimulate the return to the chemotherapy protocol. Discussion: This case illustrates that these two techniques can contribute to the control of tumor growth and refractory symptoms, such as pain, probably by enhancing the immune system. Conclusions: The potential use of the combination of these two therapies, ozone therapy and PEMF therapy, can contribute to palliation of cancer patients, alone or in combination with pharmacological therapies. The conduct of future investigations on this paradigm can elucidate how much these techniques contribute to the survival and well-being of these patients.

Keywords: cancer, complementary and alternative medicine , ozone therapy, palliative care, PEMF therapy

Procedia PDF Downloads 137
19168 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 52
19167 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 352
19166 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 179
19165 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation

Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos

Abstract:

A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.

Keywords: rainfall, runoff, hydrologic design, PMF

Procedia PDF Downloads 245
19164 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.

Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing

Procedia PDF Downloads 313
19163 Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process

Authors: Farzad Vakili-Farahani, Joern Lungershausen, Kilian Wasmer

Abstract:

Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes.

Keywords: wobbled laser beam welding, wobbling function, beam oscillation, micro welding

Procedia PDF Downloads 303
19162 Competing Risks Modeling Using within Node Homogeneity Classification Tree

Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya

Abstract:

To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.

Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree

Procedia PDF Downloads 257
19161 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 163
19160 COVID–19 Impact on Passenger and Cargo Traffic: A Case Study

Authors: Maja Čović, Josipa Bojčić, Bruna Bacalja, Gorana Jelić Mrčelić

Abstract:

The appearance of the COVID-19 disease and its fast-spreading brought global pandemic and health crisis. In order to prevent the further spreading of the virus, the governments had implemented mobility restriction rules which left a negative mark on the world’s economy. Although there is numerous research on the impact of COVID-19 on marine traffic around the world, the objective of this paper is to consider the impact of COVID-19 on passenger and cargo traffic in Port of Split, in the Republic of Croatia. Methods used to make the theoretical and research part of the paper are descriptive method, comparative method, compilation, inductive method, deductive method, and statistical method. Paper relies on data obtained via Port of Split Authority and analyses trends in passenger and cargo traffic, including the year 2020, when the pandemic broke. Significant reductions in income, disruptions in transportation and traffic, as well as other maritime services are shown in the paper. This article also observes a significant decline in passenger traffic, cruising traffic and also observes the dynamic of cargo traffic inside the port of Split.

Keywords: COVID-19, pandemic, passenger traffic, ports, trends, cargo traffic

Procedia PDF Downloads 203
19159 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana

Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor

Abstract:

In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.

Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency

Procedia PDF Downloads 43
19158 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan

Abstract:

It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.

Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic

Procedia PDF Downloads 214
19157 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 112
19156 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 61
19155 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 346
19154 Gross Anatomical and Ultra Structural Microscopic Studies on the Nose of the Dromedary Camel (Camelus Dromederius)

Authors: Mahmoud S Gewaily, Atif Hasan, Mohamed Kassab, Ali A. Mansour

Abstract:

The current study was carried out on the nose of seventeenth healthy adult camels. Specimens were collected from slaughter houses then fixed, dissected and photographed. For ultra structural studies, fresh samples were fixed in different fixatives and prepared for examination by light, scanning and electron microscopes. Grossly, nose of the camel had narrow nostrils, slit like in outline. In the nasal cavity, the nasal vestibule was narrow and has scanty dorsal and lateral cartilaginous support. The Nasal conchae (dorsal, middle and ventral) enclosed the dorsal, middle conchal sinuses and no ventral conchal sinus; instead there was recess and bull a. The ethmoidal conchae (8 in number) were noticeably fewer than in the other domestic animals like ox and horse. The olfactory mucosa was restricted to a small area covering the caudal parts of the ethmoidal conchae. The lining epithelium of the nasal cavity changes gradually from stratified squamous epithelium in the nasal vestibule to pseudo stratified columnar ciliated in the respiratory region and finally, olfactory epithelium covering the caudal parts of the ethmoidal conchae. In the dromedary camel, a special feature was the presence of dense and relatively long hair covering the nostrils and the rostral part of the nasal vestibule. In conclusion, the anatomical features of the nose of the dromedary camel, especially in its rostral parts enable this animal to breathe properly in the sandy dry weather.

Keywords: camel nose, anatomy, dromedary camel, nasal vestibule

Procedia PDF Downloads 418
19153 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: real estate price, least-square, grey correlation, macroeconomics

Procedia PDF Downloads 185
19152 Use of Metallic and Bimetallic Nanostructures as Constituents of Active Bio-Based Films

Authors: Lina F. Ballesteros, Hafsae Lamsaf, Miguel A. Cerqueira, Lorenzo M. Pastrana, Sandra Carvalho, Jose A. Teixeira, S. Calderon V.

Abstract:

The use of bio-based packaging materials containing metallic and bimetallic nanostructures is relatively modern technology. In this sense, the food packaging industry has been investigating biological and renewable resources that can replace petroleum-based materials to reduce the environmental impact and, at the same time, including new functionalities using nanotechnology. Therefore, the main objective of the present work consisted of developing bio-based poly-lactic acid (PLA) films with Zinc (Zn) and Zinc-Iron (Zn-Fe) nanostructures deposited by magnetron sputtering. The structural, antimicrobial, and optical properties of the films were evaluated when exposed at 60% and 96% relative humidity (RH). The morphology and elemental analysis of the samples were determined by scanning (transmission) electron microscopy (SEM and STEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The structure of the PLA was monitored before and after deposition by Fourier transform infrared spectroscopy (FTIR) analysis, and the antimicrobial and color assays were performed by using the zone of inhibition (ZOI) test and a Minolta colorimeter, respectively. Finally, the films were correlated in terms of the deposit conditions, Zn or Zn-Fe concentrations, and thickness. The results revealed PLA films with different morphologies, compositions, and thicknesses of Zn or Zn-Fe nanostructures. The samples showed a significant antibacterial and antifungal activity against E. coli, P. aeruginosa, P. fluorescens, S. aureus, and A. niger, and considerable changes of color and opacity at 96% RH, especially for the thinner nanostructures (150-250 nm). On the other hand, when the Fe fraction was increased, the lightness of samples increased, as well as their antimicrobial activity when compared to the films with pure Zn. Hence, these findings are relevant to the food packaging field since intelligent and active films with multiple properties can be developed.

Keywords: biopolymers, functional properties, magnetron sputtering, Zn and Zn-Fe nanostructures

Procedia PDF Downloads 102
19151 Product Feature Modelling for Integrating Product Design and Assembly Process Planning

Authors: Baha Hasan, Jan Wikander

Abstract:

This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.

Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology

Procedia PDF Downloads 296
19150 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 270