Search results for: estimation after selection
2834 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients
Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar
Abstract:
We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.Keywords: video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance
Procedia PDF Downloads 4262833 On the Effect of Immigration on Destination: Country Corruption
Authors: Eugen Dimant, Tim Krieger, Margarete Redlin
Abstract:
This paper analyzes the impact of migration on destination-country corruption levels. Capitalizing on a comprehensive dataset consisting of annual immigration stocks of OECD coun-tries from 207 countries of origin for the period 1984-2008, we explore different channels through which corruption might migrate. We employ different estimation methods using fixed effects and Tobit regressions in order to validate our findings. What is more, we also address the issue of endogeneity by using the Difference-Generalized Method of Moments (GMM) estimator. Independent of the econometric methodology we consistently find that while general migration has an insignificant effect on the destination country’s corruption level, immigration from corruption-ridden origin countries boosts corruption in the destination country. Our findings provide a more profound understanding of the economic implications associated with migration flows.Keywords: corruption, migration, impact of migration, destination-country corruption
Procedia PDF Downloads 3252832 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve
Authors: Roger L. Goodwin
Abstract:
This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve
Procedia PDF Downloads 4772831 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 1342830 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique
Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit
Abstract:
In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes
Procedia PDF Downloads 2512829 Adaptations to Hamilton's Rule in Human Populations
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 5) Pathway to reduce human sacrifice. This chapter discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 602828 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 4682827 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2172826 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis
Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk
Abstract:
The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing
Procedia PDF Downloads 1572825 Health Risks Evaluation of Heavy Metals in Sea Food from Persian Gulf
Authors: Mohsen Ehsanpour, Maryam Ehsanpour, Majid Afkhami, Fatemeh Afkhami
Abstract:
Heavy metals are increasingly being released into natural waters from geological and anthropogenic sources. The distribution of several heavy metals (Cd, Pb) was investigated in muscle, liver in six different fish species seasonally collected in Persian Gulf (autumn 2009-summer 2010). The concentrations of all metals were lower in flesh than those recorded in liver due to their physiological roles. The THQ index for fish was calculated. Estimation of target hazard quotients calculations for the contaminated fish consumption was calculated to evaluate the effect of pollution on health. Total metal THQs values (Pb and Cd) for adults were 0.05 and 0.04 in Bushehr and Bandar-Genaveh, respectively, and for children they were 0.08 and 0.05 in Bandar-Abbas and Bandar-Lengeh, respectively.Keywords: Persian Gulf, heavy metals, health risks, THQ index
Procedia PDF Downloads 7162824 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems
Procedia PDF Downloads 1192823 A Faunistic Comparative Study of Families Hesperiidae and Nymphalidae (Lepidoptera: Rhopalocera) of Syrian Arab Republic and Republic of Armenia
Authors: N. Zarikian
Abstract:
Comparative analysis of the fauna of two families of butterflies (Lepidoptera: Rhopalocera) – Hesperiidae and Nymphalidae were carried out. In general, 122 species of the families are recorded. among these 33 species belong to Hesperiidae and 89 to Nymphalidae. The numbers by countries are as follows: 72 species are found in Syria (including 24 Hesperiidae and 48 Nymphalidae) and 97 in Armenia (26 and 71 species, respectively). Two species of Hesperiidae are reported for Syrian fauna for the first time and one species is newly recorded for Armenia. From the species above mentioned 38 are common both for Syria and Armenia. For estimation of the similarity of faunas studied were used the Jaccard index. By families the index is rather different, consisting for Hesperiidae 0.5151 and for Nymphalidae 0.337.Keywords: Armenia, fauna, Hesperiidae, Nymphalidae, (Rhopalocera: Lepidoptera), Syria
Procedia PDF Downloads 2522822 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles
Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane
Abstract:
In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.Keywords: autonomous vehicles, convoy, non-linear control, non-linear observer, sliding mode
Procedia PDF Downloads 1412821 Fault Location Identification in High Voltage Transmission Lines
Authors: Khaled M. El Naggar
Abstract:
This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing
Procedia PDF Downloads 3932820 Problems Confronting the Teaching of Sex Education in Some Selected Secondary Schools in the Akoko Region of Ondo State, Nigeria
Authors: Jimoh Abiodun Alaba
Abstract:
Context: In many traditional African societies, sex education is often considered a taboo topic. However, the importance of sex education is becoming increasingly evident. This study aims to investigate the challenges faced in teaching sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Research Aim: The aim of this study is to identify and examine the problems confronting the teaching of sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Methodology: The study utilized a multi-stage sampling method. The first stage involved a purposive selection of ten (10) secondary schools in the Akoko region of Ondo State, while the second stage was a random selection of twenty (20) students, each in the selected secondary schools of the study area. This makes a total of two (200) hundred students that were considered for the survey. Descriptive analysis using percentages was employed to analyze the collected data. Factor analysis was also used to identify the most significant problems. Findings: The study revealed that sex education has been neglected in the sampled secondary schools due to traditional African beliefs that do not support the teaching and learning of this subject. Furthermore, there was evidence to suggest that parents also displayed reluctance towards the teaching of sex education, fearing that it might expose students to inappropriate behavior. Consequently, students were deprived of this essential aspect of education necessary for self-awareness and development. Theoretical Importance: This study contributes to the understanding of the challenges faced in teaching sex education in traditional African societies, specifically in the selected secondary schools in the Akoko region of Ondo state, Nigeria. Data Collection: Data were collected through the administration of 200 questionnaires in ten selected secondary schools. Additionally, information was gathered from federal, state, and local government authorities. Analysis Procedures: The collected data were analyzed using descriptive analysis, employing percentage calculations for better interpretation. Furthermore, factor analysis was conducted to isolate the most significant problems identified. Conclusion: The study concludes that sex education in the sampled secondary schools in the Akoko region of Ondo state, Nigeria, has suffered neglect due to traditional African beliefs and parental concerns. Consequently, students are denied an important aspect of education necessary for their self-awareness and development. Recommendations are made to change the negative perception of sex education, enrich the curriculum, and employ qualified personnel for its teaching. Additionally, it is suggested that sex education should be integrated with moral instruction.Keywords: African traditional belief, sex, sex education, sexual misdemeanor, morality
Procedia PDF Downloads 852819 Placement Characteristics of Major Stream Vehicular Traffic at Median Openings
Authors: Tathagatha Khan, Smruti Sourava Mohapatra
Abstract:
Median openings are provided in raised median of multilane roads to facilitate U-turn movement. The U-turn movement is a highly complex and risky maneuver because U-turning vehicle (minor stream) makes 180° turns at median openings and merge with the approaching through traffic (major stream). A U-turning vehicle requires a suitable gap in the major stream to merge, and during this process, the possibility of merging conflict develops. Therefore, these median openings are potential hot spot of conflict and posses concern pertaining to safety. The traffic at the median openings could be managed efficiently with enhanced safety when the capacity of a traffic facility has been estimated correctly. The capacity of U-turns at median openings is estimated by Harder’s formula, which requires three basic parameters namely critical gap, follow up time and conflict flow rate. The estimation of conflicting flow rate under mixed traffic condition is very much complicated due to absence of lane discipline and discourteous behavior of the drivers. The understanding of placement of major stream vehicles at median opening is very much important for the estimation of conflicting traffic faced by U-turning movement. The placement data of major stream vehicles at different section in 4-lane and 6-lane divided multilane roads were collected. All the test sections were free from the effect of intersection, bus stop, parked vehicles, curvature, pedestrian movements or any other side friction. For the purpose of analysis, all the vehicles were divided into 6 categories such as motorized 2W, autorickshaw (3-W), small car, big car, light commercial vehicle, and heavy vehicle. For the collection of placement data of major stream vehicles, the entire road width was divided into sections of 25 cm each and these were numbered seriatim from the pavement edge (curbside) to the end of the road. The placement major stream vehicle crossing the reference line was recorded by video graphic technique on various weekdays. The collected data for individual category of vehicles at all the test sections were converted into a frequency table with a class interval of 25 cm each and the placement frequency curve. Separate distribution fittings were tried for 4- lane and 6-lane divided roads. The variation of major stream traffic volume on the placement characteristics of major stream vehicles has also been explored. The findings of this study will be helpful to determine the conflict volume at the median openings. So, the present work holds significance in traffic planning, operation and design to alleviate the bottleneck, prospect of collision and delay at median opening in general and at median opening in developing countries in particular.Keywords: median opening, U-turn, conflicting traffic, placement, mixed traffic
Procedia PDF Downloads 1382818 Study of Skid-Mounted Natural Gas Treatment Process
Authors: Di Han, Lingfeng Li
Abstract:
Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations
Procedia PDF Downloads 1422817 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3682816 Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield
Authors: Norul Husna A. Kasim, Siva K. Balasundram
Abstract:
The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications.Keywords: anthocyanin, flavonoid fluorescence sensor, palm oil yield and quality
Procedia PDF Downloads 8092815 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang
Abstract:
In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.Keywords: LTE-A, relay, TDD, power saving
Procedia PDF Downloads 5162814 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Viktor M. Denisov
Abstract:
A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture
Procedia PDF Downloads 4302813 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 2092812 Estimation of Eucalyptus Wood Calorific Potential for Energy Recovering
Authors: N. Ouslimani, N. Hakimi, H. Aksas
Abstract:
The reduction of oil reserves in the world makes that many countries are directed towards the study and the use of local and renewable energies. For this purpose, wood energy represents the material of choice. The energy production is primarily thermal and corresponds to a heating of comfort, auxiliary or principal. Wood is generally conditioned in the form of logs, of pellets, even of plates. In Algeria, this way of energy saving could contribute to the safeguarding of the environment, as to the recovery of under wood products (branches, barks and various wastes on the various transformation steps). This work is placed within the framework general of the search for new sources of energy starting from the recovery of the lignocellulosic matter. In this direction, we proposed various sources of products (biomass, under product and by-products) relating to the ‘Eucalyptus species’ being able to be developed, of which we carried out a preliminary physicochemical study, necessary to the development of the densified products with high calorific value.Keywords: biomass, calorific value, combustion, energy recovery
Procedia PDF Downloads 2902811 A New Verification Based Congestion Control Scheme in Mobile Networks
Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj
Abstract:
A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain
Procedia PDF Downloads 4412810 Gender and Science: Is the Association Universal?
Authors: Neelam Kumar
Abstract:
Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.Keywords: gender, science, universal, women
Procedia PDF Downloads 3082809 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1272808 GIS Pavement Maintenance Selection Strategy
Authors: Mekdelawit Teferi Alamirew
Abstract:
As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes.Keywords: pavement, flexible, maintenance, index
Procedia PDF Downloads 622807 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 1192806 Reasons for the Selection of Information-Processing Framework and the Philosophy of Mind as a General Account for an Error Analysis and Explanation on Mathematics
Authors: Michael Lousis
Abstract:
This research study is concerned with learner’s errors on Arithmetic and Algebra. The data resulted from a broader international comparative research program called Kassel Project. However, its conceptualisation differed from and contrasted with that of the main program, which was mostly based on socio-demographic data. The way in which the research study was conducted, was not dependent on the researcher’s discretion, but was absolutely dictated by the nature of the problem under investigation. This is because the phenomenon of learners’ mathematical errors is due neither to the intentions of learners nor to institutional processes, rules and norms, nor to the educators’ intentions and goals; but rather to the way certain information is presented to learners and how their cognitive apparatus processes this information. Several approaches for the study of learners’ errors have been developed from the beginning of the 20th century, encompassing different belief systems. These approaches were based on the behaviourist theory, on the Piagetian- constructivist research framework, the perspective that followed the philosophy of science and the information-processing paradigm. The researcher of the present study was forced to disclose the learners’ course of thinking that led them in specific observable actions with the result of showing particular errors in specific problems, rather than analysing scripts with the students’ thoughts presented in a written form. This, in turn, entailed that the choice of methods would have to be appropriate and conducive to seeing and realising the learners’ errors from the perspective of the participants in the investigation. This particular fact determined important decisions to be made concerning the selection of an appropriate framework for analysing the mathematical errors and giving explanations. Thus the rejection of the belief systems concerning behaviourism, the Piagetian-constructivist, and philosophy of science perspectives took place, and the information-processing paradigm in conjunction with the philosophy of mind were adopted as a general account for the elaboration of data. This paper explains why these decisions were appropriate and beneficial for conducting the present study and for the establishment of the ensued thesis. Additionally, the reasons for the adoption of the information-processing paradigm in conjunction with the philosophy of mind give sound and legitimate bases for the development of future studies concerning mathematical error analysis are explained.Keywords: advantages-disadvantages of theoretical prospects, behavioral prospect, critical evaluation of theoretical prospects, error analysis, information-processing paradigm, opting for the appropriate approach, philosophy of science prospect, Piagetian-constructivist research frameworks, review of research in mathematical errors
Procedia PDF Downloads 1902805 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures
Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley
Abstract:
Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition
Procedia PDF Downloads 182