Search results for: deviator stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3891

Search results for: deviator stress

2541 Autonomic Nervous System and CTRA Gene Expression among Healthy Young Adults in Japan

Authors: Yoshino Murakami, Takeshi Hashimoto, Steve Cole

Abstract:

The autonomic nervous system (ANS), particularly the sympathetic (SNS) and parasympathetic (PNS) branches, plays a vital role in modulating immune function and physiological homeostasis. In recent years, the Conserved Transcriptional Response to Adversity (CTRA) has emerged as a key marker of the body's response to chronic stress. This gene expression profile is characterized by SNS-mediated upregulation of pro-inflammatory genes (such as IL1B and TNF) and downregulation of antiviral response genes (e.g., IFI and MX families). CTRA has been observed in individuals exposed to prolonged stressors like loneliness, social isolation, and bereavement. Some research suggests that PNS activity, as indicated by heart rate variability (HRV), may help counteract the CTRA. However, previous PNS-CTRA studies have focused on Western populations, raising questions about the generalizability of these findings across different cultural and ethnic backgrounds. This study aimed to examine the relationship between HRV and CTRA gene expression in young, healthy adults in Japan. We hypothesized that HRV would be inversely related to CTRA gene expression, similar to patterns observed in previous Western studies. A total of 49 participants aged 20 to 39 were recruited, and after data exclusions, 26 participants' HRV and CTRA data were analyzed. HRV was measured using an electrocardiogram (ECG), and two time-domain indices were utilized: the root mean square of successive differences (RMSSD) and the standard deviation of NN intervals (SDNN). Blood samples were collected for gene expression analysis, focusing on a standard set of 47 CTRA indicator gene transcripts. it findings revealed a significant inverse relationship between HRV and CTRA gene expression, with higher HRV correlating with reduced pro-inflammatory gene activity and increased antiviral response. These results are consistent with findings from Western populations and demonstrate that the relationship between ANS function and immune response generalizes to an East Asian population. The study highlights the importance of HRV as a biomarker for psychophysiological health, reflecting the body's ability to buffer stress and maintain immune balance. These findings have implications for understanding how physiological systems interact across different cultures and ethnicities. Given the influence of chronic stress in promoting inflammation and disease risk, interventions aimed at improving HRV, such as mindfulness-based practices or physical exercise, could provide significant health benefits. Future research should focus on larger sample sizes and experimental interventions to better understand the causal pathways linking HRV to CTRA gene expression, and determine whether improving HRV may help mitigate the harmful effects of stress on health by reducing inflammation.

Keywords: autonomic nervous activity, neuroendocrine system, inflammation, Japan

Procedia PDF Downloads 18
2540 Protective Role of Fish Oil against Hepatotoxicity Induced by Fipronil on Female Rats

Authors: Amel A. Refaie, Amal Ramadan, Abdel-Tawab H. Mossa

Abstract:

This study was designed to evaluate the adverse effects of sub-chronic exposure to the fipronil on the liver of female rats at a dose equal to 400 mg /kg (1/10LD50) in drinking water and the protective role of fish oil at concentration 117.6 mg/Kg b.wt via oral routes daily for 28 days. Fipronil treatment caused a decrease in body weight gain and increase in relative liver weight. Fipronil induced a significant increase in the liver biomarkers enzymes such as alanine aminotransferases (ALT), aspartate aminotransferases (AST), alkaline phosphatase (ALP) and levels of total protein while fipronil caused a significant decrease in butyryl cholinesterase activity in FPN-treated rats. Oxidative stress biomarkers such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) were significantly decreased in liver tissue, while lipid peroxidation (LPO) was significantly increased in fipronil treating rats in a dose-dependent manner. FPN caused histopathological alterations in liver of female rats. From our results, it can be reported that FPN induced lipid peroxidation, oxidative stress, liver injury in female rats and fish oil used to protect animals against the adverse effect of pesticide exposure. These pathophysiological alterations in liver tissues could be due to the toxic effect of fipronil that associated with a generation of free radicals.

Keywords: fipronil (FPN), fish oil, hepatotoxicity, transaminases, antioxidant enzymes, female rats

Procedia PDF Downloads 143
2539 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution

Procedia PDF Downloads 121
2538 A Stepwise Approach for Piezoresistive Microcantilever Biosensor Optimization

Authors: Amal E. Ahmed, Levent Trabzon

Abstract:

Due to the low concentration of the analytes in biological samples, the use of Biological Microelectromechanical System (Bio-MEMS) biosensors for biomolecules detection results in a minuscule output signal that is not good enough for practical applications. In response to this, a need has arisen for an optimized biosensor capable of giving high output signal in response the detection of few analytes in the sample; the ultimate goal is being able to convert the attachment of a single biomolecule into a measurable quantity. For this purpose, MEMS microcantilevers based biosensors emerged as a promising sensing solution because it is simple, cheap, very sensitive and more importantly does not need analytes optical labeling (Label-free). Among the different microcantilever transducing techniques, piezoresistive based microcantilever biosensors became more prominent because it works well in liquid environments and has an integrated readout system. However, the design of piezoresistive microcantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. It was found that the parameters that can be optimized to enhance the sensitivity of Piezoresistive microcantilever-based sensors are: cantilever dimensions, cantilever material, cantilever shape, piezoresistor material, piezoresistor doping level, piezoresistor dimensions, piezoresistor position, Stress Concentration Region's (SCR) shape and position. After a systematic analyzation of the effect of each design and process parameters on the sensitivity, a step-wise optimization approach was developed in which almost all these parameters were variated one at each step while fixing the others to get the maximum possible sensitivity at the end. At each step, the goal was to optimize the parameter in a way that it maximizes and concentrates the stress in the piezoresistor region for the same applied force thus get the higher sensitivity. Using this approach, an optimized sensor that has 73.5x times higher electrical sensitivity (ΔR⁄R) than the starting sensor was obtained. In addition to that, this piezoresistive microcantilever biosensor it is more sensitive than the other similar sensors previously reported in the open literature. The mechanical sensitivity of the final senior is -1.5×10-8 Ω/Ω ⁄pN; which means that for each 1pN (10-10 g) biomolecules attach to this biosensor; the piezoresistor resistivity will decrease by 1.5×10-8 Ω. Throughout this work COMSOL Multiphysics 5.0, a commercial Finite Element Analysis (FEA) tool, has been used to simulate the sensor performance.

Keywords: biosensor, microcantilever, piezoresistive, stress concentration region (SCR)

Procedia PDF Downloads 569
2537 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking

Authors: Farshad Amini, Kejun Wen

Abstract:

The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.

Keywords: monitoring, paving fabrics, performance, reflective cracking

Procedia PDF Downloads 330
2536 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell

Authors: M. Hossain, H. P. Zhu, A. B. Yu

Abstract:

This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.

Keywords: DEM, granular rheology, non-spherical particles, regime transition

Procedia PDF Downloads 261
2535 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 175
2534 Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia

Authors: Samia Khadhar, Anis Chekirbene, Nouha Khiari, Amira Mabrouki

Abstract:

The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river.

Keywords: Wadi Madjerda, organic pollution, water and sediments surface, anthropics stress

Procedia PDF Downloads 125
2533 Water Productivity and Sensitivity Tolerance Stress Indices in Five Soybean Cultivars (Glycine max L.) at Different Levels of Water Deficit

Authors: Hassan Masoumi, Rashed Alavi, Mahmoud Reza Khorshidian

Abstract:

In order to measure the water deficit stress effects on seed yield and water productivity of soybean cultivars, a two field experiments wad conducted out via split plot in a randomized complete block design with four replications in 2011 and 2012. Irrigation treatments were three levels (S1; 50, S2; 62.5 and S3; 150 mm) that applied based on evaporation from the ‘class A’ pan. Cultivars were L17, Clean, T.M.S, Williams×Chippewa and M9, too. The results showed that, only extreme water deficit stresses (S3) was reduced number of pods per plants, dry weight, seed yield and also water productivity and water economic productivity, significantly. Among cultivars and at the first and second levels of irrigation (S1, S2) cultivar of L17 and at the third level (S3) cultivar of Wiiliams*Chippwea had the highest seed yield, water productivity and water economic productivity. There were observed a positive and significant correlation between seed yield with number of pods per plants and plants dry weight, too. Also, despite the reduction in water consumption at level of S2 than S1 and due to the lack of a significant reduction in seed yield, water productivity and water economic productivity was also increased, significantly (P < 0.01). All indices of sensitivity and tolerance (SSI, STI and GMP) investigated in this study showed that at the moderate and extreme water deficit stresses (S2, S3), the cultivars of L17 and Wiiliams * Chippwea had the highest tolerance and lowest sensitivity among the cultivars.

Keywords: drought, sensitivity indices, yield components, seed

Procedia PDF Downloads 407
2532 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 217
2531 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 145
2530 Oxidative Status and Some Serum Macro Minerals during Estrus, Anestrous and Repeat Breeding in Cholistani Cattle

Authors: Farah Ali, Laeeq Akbar Lodhi, Riaz Hussain, Muhammad Sufyan

Abstract:

The present study was conducted to determine the macro mineral profile and biomarkers of oxidative stress in Cholistani cattle kept at a public farm and various villages in district Bahawalpur. For this purpose 90 blood samples were collected each from estrual, anestrous and repeat breeding cattle having different age and lactation number. Reproductive tract examination of all the cattle was carried out to determine the reproductive status. Blood samples without EDTA were collected for serum separation at day of estrus (normal cyclic), repeat breeder and anestrous cows. The serum calcium levels were significantly decreased (P<0.05) in anestrous (7.31±0.02 mg/dl) cattle as compared to estrus. However, these values were non-significantly different between repeat breeder and cattle having estrus phase. The concentrations of serum phosphorus were significantly higher (P<0.01) in normal estrual (4.99±0.08 mg/dl) as compared torepeat breeder (3.90±0.06 mg/dl) and anestrous (3.82±0.04 mg/dl) Cholistani cattle. Mean serum MDA (nmol/ml) levels of repeat breeder (2.68±0.18) and anestrous (2.54±0.22) were significantly(P<0.01) higher than the estrous (1.71±0.03) cattle. Moreover, the serum nitric oxide levels(µmol/L) were also increased significantly (P<0.01) in repeat breeder(58.28±4.01)and anestrous (61.40±9.40) than the normalestrous (31.67±6.71) cattle. The ratio of Ca: P in normal cyclic animals was lower (1.73:1) as compared to the anestrous animals (1.92:1). It can be concluded from the present study that the level of Ca: P should also be near to 1.5:1 for better reproductive performance.

Keywords: anestrus, cholistani cattle, minerals, oxidative stress, repeat breeder

Procedia PDF Downloads 604
2529 Utilization of Synthetic and Natural Ascorbic Acid (African Locust Bean, Baobab, and Prosopis Africana) Pulp for Sustainable Broiler Production in the Era of Global Warming

Authors: Lawan Adamu, Aminu Maidala

Abstract:

Heat stress exerts a high deteriorating impact on the poultry industry which could be ameliorated by dietary incorporation of synthetic vitamin C. Certain herbs either alone or in combination thereof are also a rich source of ascorbic acid in natural form. Gashua is located in the semi arid zones with temperature ranges of 38-43oC especially in the months of March up to June/July which make survival and production much difficult to poultry especially broilers chickens as it was found that high ambient temperatures above 380C feed consumption, growth rate, feed efficiency, survivability, egg production and egg quality tends to decline. In order to address the problem of heat stress, an experiment was conducted in the month of March/April to determine the effect of synthetic ascorbic-acid (vitamin C), natural ascorbic from baobab, African locust bean and prosopis africana pulp was administer in drinking water and basal diets adlibitum. 300 day old marshal breed chicks were used for this experiment which was divided into five treatment group with 20 birds per replicate which designated as zero, synthetic ascorbic acid 40g/L, baobab pulp 40g/L, African locust pulp 40g/L and iron wood pulp 40g/L for T1, T2 T3 T4 and T5 respectively. The experiment was lasted for eight weeks (four weeks each for the starter and finisher). Data collected were subjected to analysis of variance (ANOVA) using SAS 2002 soft wire and significant difference observed means were separated using Duncan multiple range test. The result revealed that bird on control diet were significantly (p<0.05) lowered in terms total and daily weight gain and feed efficiency but significantly (p<0.05) higher in terms feed intake, water intake, rectal temperature and mortality. This study concluded that ascorbic acid increased broiler performance and reduced mortality under high temperature thereby maintain the sustainability of broiler production to bridge the gap of animal protein deficit in the hot arid zone.

Keywords: ascorbic acid, heat stress, broiler, performance

Procedia PDF Downloads 20
2528 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.

Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia PDF Downloads 514
2527 Protective Role of CoQ10 or L-Carnitine on the Integrity of the Myocardium in Doxorubicin Induced Toxicity

Authors: Gehan A. Hegazy, Hesham N. Mustafa, Sally A. El Awdan, Marawan AbdelBaset

Abstract:

Doxorubicin (DOX) is a chemotherapeutic agent used for the treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on the heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy-two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10 mg/kg); CoQ10 group (200 mg/kg); L-carnitine group (100 mg/kg); DOX + CoQ10 group; DOX + L-carnitine group. CoQ10 and L-carnitine treatment orally started five days before a single dose of 10 mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for ten days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1), tumor necrosis factor alpha (TNF-), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With visible improvements in -SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium.

Keywords: CoQ10, doxorubicin, L-Carnitine, cardiotoxicity

Procedia PDF Downloads 168
2526 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 391
2525 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 213
2524 Exploring the Impact of Eye Movement Desensitization and Reprocessing (EMDR) And Mindfulness for Processing Trauma and Facilitating Healing During Ayahuasca Ceremonies

Authors: J. Hash, J. Converse, L. Gibson

Abstract:

Plant medicines are of growing interest for addressing mental health concerns. Ayahuasca, a traditional plant-based medicine, has established itself as a powerful way of processing trauma and precipitating healing and mood stabilization. Eye Movement Desensitization and Reprocessing (EMDR) is another treatment modality that aids in the rapid processing and resolution of trauma. We investigated group EMDR therapy, G-TEP, as a preparatory practice before Ayahuasca ceremonies to determine if the combination of these modalities supports participants in their journeys of letting go of past experiences negatively impacting mental health, thereby accentuating the healing of the plant medicine. We surveyed 96 participants (51 experimental G-TEP, 45 control grounding prior to their ceremony; age M=38.6, SD=9.1; F=57, M=34; white=39, Hispanic/Latinx=23, multiracial=11, Asian/Pacific Islander=10, other=7) in a pre-post, mixed methods design. Participants were surveyed for demographic characteristics, symptoms of PTSD and cPTSD (International Trauma Questionnaire (ITQ), depression (Beck Depression Inventory, BDI), and stress (Perceived Stress Scale, PSS) before the ceremony and at the end of the ceremony weekend. Open-ended questions also inquired about their expectations of the ceremony and results at the end. No baseline differences existed between the control and experimental participants. Overall, participants reported a decrease in meeting the threshold for PTSD symptoms (p<0.01); surprisingly, the control group reported significantly fewer thresholds met for symptoms of affective dysregulation, 2(1)=6.776, p<.01, negative self-concept, 2 (1)=7.122, p<.01, and disturbance in relationships, 2 (1)=9.804, p<.01, on subscales of the ITQ as compared to the experimental group. All participants also experienced a significant decrease in scores on the BDI, t(94)=8.995, p<.001, and PSS, t(91)=6.892, p<.001. Similar to patterns of PTSD symptoms, the control group reported significantly lower scores on the BDI, t(65.115)=-2.587, p<.01, and a trend toward lower PSS, t(90)=-1.775, p=.079 (this was significant with a one-sided test at p<.05), compared to the experimental group following the ceremony. Qualitative interviews among participants revealed a potential explanation for these relatively higher levels of depression and stress in the experimental group following the ceremony. Many participants reported needing more time to process their experience to gain an understanding of the effects of the Ayahuasca medicine. Others reported a sense of hopefulness and understanding of the sources of their trauma and the necessary steps to heal moving forward. This suggests increased introspection and openness to processing trauma, therefore making them more receptive to their emotions. The integration process of an Ayahuasca ceremony is a week- to months-long process that was not accessible in this stage of research, yet it is an integral process to understanding the full effects of the Ayahuasca medicine following the closure of a ceremony. Our future research aims to assess participants weeks into their integration process to determine the effectiveness of EMDR, and if the higher levels of depression and stress indicate the initial reaction to greater awareness of trauma and receptivity to healing.

Keywords: ayahuasca, EMDR, PTSD, mental health

Procedia PDF Downloads 65
2523 Cloning and Functional Analysis of NtPIN1a Promoter Under Various Abiotic Stresses in Nicotiana Tabacum

Authors: Zia Ullah, Muhammad Asim, Shi Sujuan, Rayyan Khan, Aaqib Shaheen, LIU Haobao

Abstract:

The plant-specific auxin efflux proteins PIN-FORMED (PIN) have been well depicted in many plant species for their essential roles in regulating the transport of auxins in several phases of plant growth. Little is known about the various functions of the PIN family genes in the Nicotiana tabacum (N. tabacum) species during plant growth. To define the expression pattern of the NtPIN1a gene under abiotic stresses and hormone treatment, transgenic tobacco with promoterNtPIN1a::GUS construct was employed. Comprehensive computational analyses of the NtPIN1a promoter confirmed the existence of common core promoter elements including CAAT-box, TATA-box, hormone, and abiotic stress-responsive elements such as ABRE, P-box, MYC, MYB, ARE, and GC-motifs. The transgenic plants with the promoter of NtPIN1a displayed a promising expression of β-glucuronidase (GUS) in germinating seeds, root tips, shoot-apex, and developing leaves under optimal conditions. While the differential expression of GUS in moderate salt, drought, low potassium stresses, and externally high auxin level at two different time points, suggested NtPIN1a played a key role in growth processes and the plants’ response to abiotic stresses. This analysis provides a foundation for more in-depth discoveries of the biological functions of NtPIN1a in Nicotiana species and this promoter may be employed in genetic engineering of other crops for enhanced stress tolerance.

Keywords: tobacco, nicotiana tabacum, pin, promoter, GUS, abiotic stresses, auxin

Procedia PDF Downloads 94
2522 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber

Procedia PDF Downloads 234
2521 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Varinder Singh

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: allium cepa, cerebral ischemia, memory, sensorimotor

Procedia PDF Downloads 111
2520 Changes in Some Morphological Characters of Dill Under Cadmium Stress

Authors: A. M. Daneshian Moghaddam, A. H. Hosseinzadeh, A. Bandehagh

Abstract:

To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height.

Keywords: pollution, essential oil, ecotype, dill, heavy metals, cadmium

Procedia PDF Downloads 425
2519 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 225
2518 Increasing Sustainability of Melanin Bio-Production Using Seawater

Authors: Harsha Thaira, Ritu Raval, Keyur Raval

Abstract:

Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.

Keywords: melanin, marine, bioprocess, pseudomonas

Procedia PDF Downloads 274
2517 Relationship between Reproduction Performances and Coat Characteristics of Montbeliarde Cows during Hot Season in Algeria

Authors: Sara Lamari, Toufik Madani

Abstract:

This study aimed to explore the relationship between reproduction performances and coat characteristics of Montbéliarde cows born in Algeria or imported from Europe during the hot season in Algeria. Hair coat traits (hair coat color, Hair Weight, hair length, the number of hair per unit area, total hair diameters and hair medulla diameters) were estimated in 18 imported cattle and 49 locally born cows. These traits were measured in an area of 20cm below the dorsal line in the center of the thorax. Results showed that hair coats were significantly different between locally born and imported cows. Imported cows had whiter coats when compared to locally born cows for Montbéliarde cows. A significant effect of total hair diameter was observed on the interval from calving to conception (IC) for imported Montbéliarde cows, suggesting less incidence of heat stress on reproduction efficiency of cows with thin diameter hair coats. Montbéliarde cows with short hair coat registered significantly more number of mating per conception (2, 28±1, 93 Vs. 1,67±0,92) and IC (98,04±78,81Vs 74.53 ± 35.60 days) when compared to cows with long hairs. Hair works as a temperature regulator in association with muscles in the skin and may affect reproduction performances during hit stress season. It can be assumed that the length and a total diameter of hairs for the Montbeliarde breed appears to be related to their reproductive efficiency.

Keywords: hair coat, reproduction, Montbeliarde cow, hot season

Procedia PDF Downloads 164
2516 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 188
2515 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 147
2514 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 319
2513 Investing the Employees Higher Quitting Intention at the Call Centers of Pakistan: A Reality or a Myth: A Case Study of Pakistan Telecommunication Sector

Authors: Naheed Malik, Marisa Smith

Abstract:

This study has been undertaken as an attempt to explore the underlying reasons that cause higher employee turnover rates at the call centers of Pakistan. This research also aimed to examine the relationship among the job related variables such as job satisfaction, organizational commitment, supervisor support, self-esteem, organizational stressors (work overload, role ambiguity and work family conflict) and quitting inclination. A total of 340 call centers respondents filled the survey questionnaire. The data was analyzed through SPSS 19.0. Results reveal the significant relationship among the study variables and stress level contributing more towards employee penchant to leave the job. A significant amount of call centers employee have proclivity to quit from their jobs as soon as they would be able to find some other jobs with attractive compensation. The majority of the respondents were found to be unhappy and dissatisfied due to hectic schedule and imbalance between family and work. This research also highlighted the specific areas in which call centre management needs to emphasize deliberately that affect more sharply on employee leaving aptitude. This study also suggests some useful strategies for the well being of employees that can minimize their tendency of quitting and retention in the long run.

Keywords: call centers, stress, job satisfaction, organizational commitment, supervisor’s support, self esteem, employee turnover, employees’ intention to quit, customer service representative (CSRs)

Procedia PDF Downloads 280
2512 The Development of a Residual Stress Measurement Method for Roll Formed Products

Authors: Yong Sun, Vladimir Luzin, Zhen Qian, William J. T. Daniel, Mingxing Zhang, Shichao Ding

Abstract:

The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry.

Keywords: roll forming, residual stress, measurement method, neutron diffraction

Procedia PDF Downloads 363