Search results for: computational brain
1821 LTE Modelling of a DC Arc Ignition on Cold Electrodes
Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov
Abstract:
The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes
Procedia PDF Downloads 1251820 Series Solutions to Boundary Value Differential Equations
Authors: Armin Ardekani, Mohammad Akbari
Abstract:
We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.Keywords: computational mathematics, differential equations, engineering, series
Procedia PDF Downloads 3361819 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing
Authors: Seyong Oh, Jin-Hong Park
Abstract:
Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing
Procedia PDF Downloads 1761818 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution
Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud
Abstract:
In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch
Procedia PDF Downloads 4211817 Determination of Parasitic Load in Different Tissues of Murine Toxoplasmosis after Immunization by Excretory-Secretory Antigens using Real Time QPCR
Authors: Ahmad Daryani, Yousef Dadimoghaddam, Mehdi Sharif, Ehsan Ahmadpour, Shahabeddin Sarvi, Baghar Hashemi
Abstract:
Background: Excretory-secretory antigens (ESAs) of Toxoplasma gondii are one of the candidates for immunization against toxoplasmosis. For evaluation of immunization, we determined the kinetics of the distribution of Toxoplasma and parasite load in different tissues of mice immunized by ESAs. Methods: In this experimental study, 36 mice in case (n= 18) and control (n= 18) groups were immunized with ESAs and PBS, respectively. After 2 weeks, mice were challenged intraperitoneally with Toxoplasma virulent RH strain. Blood and different tissues (brain, spleen, liver, heart, kidney, and muscle) were collected daily after challenge (1, 2, 3 and last day before death). Parasite load was calculated using Real time QPCR targeted at the B1 gene. Results: ESAs as vaccine in different tissues showed various effects. However, infected mice which received the vaccine in comparison with control group, displayed a drastically decreasing in parasite burden, in their blood and tissues (P= 0.000). Conclusion: These results indicated that ESAs with reduction of parasite load in different tissues of host could be evaluable candidate for the development of immunization strategies against toxoplasmosis.Keywords: parasitic load, murine toxoplasmosis, immunization, excretory-secretory antigens, real time QPCR
Procedia PDF Downloads 4451816 Combination of Lamotrigine and Duloxetine: A Potential Approach for the Treatment of Acute Bipolar Depression
Authors: Kedar S. Prabhavalkar, Nimmy Baby Poovanpallil
Abstract:
Lamotrigine is approved for maintenance treatment of bipolar I disorder. However, its role in the treatment of acute bipolar depression is not well clear. Its efficacy in the treatment of major depressive disorders including refractory unipolar depression suggested the use of lamotrigine as an augmentation drug for acute bipolar depression. The present study aims to evaluate and perform a comparative analysis of the therapeutic effects of lamotrigine, an epileptic mood stabilizer, when used alone and in combination with duloxetine in treating acute bipolar depression at different doses of lamotrigine. Male swiss albino mice were used. For evaluation of efficacy of combination, immobility period was analyzed 30 min after the treatment from forced swim and tail suspension tests. Further amount of sucrose consumed in sucrose preference test was estimated. The combination of duloxetine and lamotrigine showed potentiation of antidepressant activity in acute models. Decrease in immobility time and increase in the amount of sucrose consumption in stressed mice were higher in combined group compared to lamotrigine monotherapy group. Brain monoamine levels were also attenuated more with combination compared to monotherapy. Results of the present study suggest potential role of lamotrigine and duloxetine combination in the treatment of acute bipolar depression.Keywords: lamotrigine, duloxetine, acute bipolar depression, augmentation
Procedia PDF Downloads 5111815 Effect of Migraine on Functional Performance and Reported Symptoms in Children with Concussion
Authors: Abdulaziz Alkathiry
Abstract:
Concussion is a common brain injury that affect physical and cognitive performance. While several studies indicated that adolescents are more likely to develop concussion, in the last decade concussion has been mainly explored in adults. Migraine has been identified as a common symptom reported after concussion and was tied with worse prognoses. Hence, we aimed to investigate the effect of migraine on functional performance and self-reported symptoms in children with concussion. This cross-sectional study involved 35 symptomatic children aged 9 – 17 years recruited within 1 year from their concussion injury at a tertiary balance center. Participants’ symptoms and functional performance were assessed using the post-concussion symptoms scale (PCSS) and the functional gait assessment (FGA) respectively. Concussed children with migraine showed significantly worse symptoms including fatigue, sleeping impairment, difficulty concentrating, and visual problems (P < 0.05). Functional performance didn’t show differences between concussed children with and without migraine. Although concussed children with and without migraine didn’t show any differences on functional performance, worse cognitive symptoms were found in concussed children with migraine. A customized treatment approach is indicated in the presence of migraine for the management of children with concussion. Keywords: Concussion; Migraine; Balance; Post-Concussion Symptoms Scale; Functional Gait AssessmentKeywords: concussion, migraine, post-concussion symptoms scale, functional gait assessment, balance
Procedia PDF Downloads 3451814 Oxytocin and Sensorimotor Synchronization in Pairs of Strangers
Authors: Yana Gorina, Olga Lopatina, Elina Tsigeman, Larisa Mararitsa
Abstract:
The ability to act in concert with others, the so-called sensorimotor synchronisation, is a fundamental human ability that underlies successful interpersonal coordination. The manifestation of accuracy and plasticity in synchronisation is an adaptive aspect of interaction with the environment, as well as the ability to predict upcoming actions and behaviour of others. The ability to temporarily coordinate one’s actions with a predictable external event is manifested in such types of social behaviour as a synchronised group dance to music played live by an orchestra, group sports (rowing, swimming, etc.), synchronised actions of surgeons during an operation, applause from an admiring audience, walking rhythms, etc. Both our body and mind are involved in achieving the synchronisation during social interactions. However, it has not yet been well described how the brain determine the external rhythm and what neuropeptides coordinate and synchronise actions. Over the past few decades, there has been an increased interest among neuroscientists and neurophysiologists regarding the neuropeptide oxytocin in the context of its complex, diverse and sometimes polar effects manifested in the emotional and social aspects of behaviour (attachment, trust, empathy, emotion recognition, stress response, anxiety and depression, etc.). Presumable, oxytocin might also be involved in social synchronisation processes. The aim of our study is to test the hypothesis that oxytocin is linked to interpersonal synchronisation in a pair of strangers.Keywords: behavior, movement, oxytocin, synchronization
Procedia PDF Downloads 621813 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame
Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi
Abstract:
The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame
Procedia PDF Downloads 2781812 Electroencephalogram Study of Change Blindness in Mindful Subjects
Authors: Lea Lachaud, Aida Raoult, Marion Trousselard, Francois B. Vialatte
Abstract:
This paper addresses mindfulness from a psychological and neuroscientific perspective, by studying how it modulates attention. Being mindful defines a state characterized by 1-an attention directed to the subjective experience of present moment, 2-an unconditional acceptance of this experience, and 3-the rejection of systematic rationalization in favor of plain awareness. The aim of this study is to investigate whether perceptual salience filters are lowered in a ‘mindful’ condition by exploring the role of being mindful in focused visual attention. Over the past decade, mindfulness therapies have seen a surge in popularity. While the outcomes of these therapies have been widely discussed, the mechanisms whereby meditation affects the brain remain mostly unknown. To explore the role of mindfulness in focused visual attention, we conducted a change blindness experiment on 24 subjects, 12 of them being mindful according to the Freiburg Mindfulness Inventory (FMI) scale. Our results suggest that mindful subjects are less affected by change blindness than non-mindful subjects. Furthermore, EEG measurements performed during the experiments may expose neural correlates specific to the mindful state on P300 evoked potentials. Finally, the analysis of both amplitude and latency caused by the perception of a change over 864 recordings may reveal biomarkers that are typical of this state. The paper concludes by discussing the implications of these results for further research.Keywords: EEG, change blindness, mindfulness, p300, perception, visual attention
Procedia PDF Downloads 2571811 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 4151810 PET Image Resolution Enhancement
Authors: Krzysztof Malczewski
Abstract:
PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity.Keywords: PET, super-resolution, image reconstruction, pattern recognition
Procedia PDF Downloads 3731809 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder
Procedia PDF Downloads 2911808 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles
Authors: Mohsen Solimani Babarsad, Payam Taheri
Abstract:
Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’
Procedia PDF Downloads 3641807 Challenging the Theory of Mind: Autism Spectrum Disorder, Social Construction, and Biochemical Explanation
Authors: Caroline Kim
Abstract:
The designation autism spectrum disorder (ASD) groups complex disorders in the development of the brain. Autism is defined essentially as a condition in which an individual lacks a theory of mind. The theory of mind, in this sense, explains the ability of an individual to attribute feelings, emotions, or thoughts to another person. An autistic patient is characteristically unable to determine what an interlocutor is feeling, or to understand the beliefs of others. However, it is possible that autism cannot plausibly characterized as the lack of theory of mind in an individual. Genes, the bran, and its interplay with environmental factors may also cause autism. A mutation in a gene may be hereditary, or instigated by diseases such as mumps. Though an autistic patient may experience abnormalities in the cerebellum and the cortical regions, these are in fact only possible theories as to a biochemical explanation behind the disability. The prevailing theory identifying autism with lacking the theory of mind is supported by behavioral observation, but this form of observation is itself determined by socially constructed standards, limiting the possibility for empirical verification. The theory of mind infers that the beliefs and emotions of people are causally based on their behavior. This paper demonstrates the fallacy of this inference, critiquing its basis in socially constructed values, and arguing instead for a biochemical approach free from the conceptual apparatus of language and social expectation.Keywords: autism spectrum disorder, sociology of psychology, social construction, the theory of mind
Procedia PDF Downloads 4061806 A Multidimensional Exploration of Narcissistic Personality Disorder Through Psycholinguistic Analysis and Neuroscientific Correlates
Authors: Dalia Elleuch
Abstract:
Narcissistic Personality Disorder (NPD) manifests as a personality disorder marked by inflated self-importance, heightened sensitivity to criticism, a lack of empathy, a preoccupation with appearance over substance, and features such as arrogance, grandiosity, a constant need for admiration, a tendency to exploit others, and an inclination towards demanding special treatment due to a sense of excessive entitlement (APA, 2013). This interdisciplinary study delves into NPD through the systematic synthesis of psycholinguistic analysis and neuroscientific correlates. The cognitive and emotional dimensions of NPD reveal linguistic patterns, including grandiosity, entitlement, and manipulative communication. Neuroscientific investigations reveal structural brain differences and alterations in functional connectivity, further explaining the neural underpinnings of social cognition deficits observed in individuals with NPD. Genetic predispositions and neurotransmitter imbalances add a layer of complexity to the understanding of NPD. The necessity for linguistic intervention in diagnosing and treating Narcissistic Personality Disorder is underscored by an interdisciplinary study that intricately synthesizes psycholinguistic analysis and neuroscientific correlates, offering a comprehensive understanding of NPD’s cognitive, emotional, and neural dimensions and paving the way for future practical, theoretical, and pedagogical approaches to address the complexities of this personality disorder.Keywords: Narcissistic Personality Disorder (NPD), psycholinguistic analysis, neuroscientific correlates, interpersonal dysfunction, cognitive empathy
Procedia PDF Downloads 651805 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key
Authors: Fola John Adeyeye
Abstract:
In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.Keywords: cryptosystem, private and public key, DPML, symmetric group Pn
Procedia PDF Downloads 2041804 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant
Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu
Abstract:
Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide
Procedia PDF Downloads 1891803 Valence Effects on Episodic Memory Retrieval Following Exposure to Arousing Stimuli in Young and Old Adults
Authors: Marianna Constantinou, Hana Burianova, Ala Yankouskaya
Abstract:
Episodic memory retrieval benefits from arousal, with better performance linked to arousing to-be-remembered information. However, the enduring impact of arousal on subsequent memory processes, particularly for non-arousing stimuli, remains unclear. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of arousal on episodic memory processes in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three distinct timepoints: during exposure to arousing and non-arousing stimuli, memory consolidation (with or without arousing stimulus exposure), and during memory retrieval (with or without arousing stimulus exposure). Behavioural results show that across both age groups, participants performed worse when retrieving episodic memories about a video preceded by a highly arousing negative image. Our fMRI findings reveal three key findings: i) the extension of the influence of negative arousal beyond encoding; ii) the presence of this influence in both young and old adults; iii) and the differential treatment of positive arousal between these age groups. Our findings emphasise valence-specific effects on memory processes and support the enduring impact of negative arousal. We further propose an age-related alteration in the old adult brain in differentiating between positive and negative arousal.Keywords: episodic memory, ageing, fmri, arousal, valence
Procedia PDF Downloads 631802 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine
Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy
Abstract:
This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.Keywords: CFD model, combustion, engine, simulation
Procedia PDF Downloads 3621801 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 5071800 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3871799 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 771798 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.Keywords: Green–Naghdi equations, nonlinearity, numerical prediction, sloshing waves, solitary waves
Procedia PDF Downloads 2881797 Electromyography Controlled Robotic Toys for Autistic Children
Authors: Uvais Qidwai, Mohamed Shakir
Abstract:
This paper presents an initial study related to the use of robotic toys as teaching and therapeutic aid tools for teachers and care-givers as well as parents of children with various levels of autism spectrum disorder (ASD). Some of the most common features related to the behavior of a child with ASD are his/her social isolation, living in their own world, not being physically active, and not willing to learn new things. While the teachers, parents, and all other related care-givers do their best to improve the condition of these kids, it is usually quite an uphill task. However, one remarkable observation that has been reported by several teachers dealing with ASD children is the fact that the same children do get attracted to toys with lights and sounds. Hence, this project targets the development/modifications of such existing toys into appropriate behavior training tools which the care-givers can use as they would desire. Initially, the remote control is in hand of the trainer, but after some time, the child is entrusted with the control of the robotic toy to test for the level of interest. It has been found during the course of this study that children with quite low learning activity got extremely interested in the robot and even advanced to controlling the robot with the Electromyography (EMG). It has been observed that the children did show some hesitation in the beginning 5 minutes of the very first sessions of such interaction but were very comfortable afterwards which has been considered as a very strong indicator of the potential of this technique in teaching and rehabilitation of children with ASD or similar brain disorders.Keywords: Autism Spectrum Disorder (ASD), robotic toys, IR control, electromyography, LabVIEW based remote control
Procedia PDF Downloads 4441796 Mother's Knowledge, Attitude and Practices towards Childhood Immunization in District Nankana Sahib
Authors: Farina Maqbool
Abstract:
Background: It is well said that children are considered the future masons of the country and a healthy brain is found in a healthy body. Therefore, a healthy generation can be produced by giving knowledge of immunization to mothers. Immunization is the most lucrative public health intrusion that has placed the greatest effect on the health of the people. The main objective of the present study was to find out the mother’s knowledge, attitude, and practices towards childhood immunization. Methods: Multistage sampling technique was used. One hundred and sixty mothers were selected conveniently who have at least one child up to two years. Data were collected through the face to face interview. The chi-square test was used to test the significance of the association between independent and dependent variables. Data were analyzed using the Statistical Package for Social Science. Results: A higher percentage of mothers (85.0%) knew vaccine-preventable diseases. Major proportion (82.5%) of the mothers had thought that immunization is important for their child’s health. A majority (66.3%) of the respondents’ children were fully immunized, whereas 26.3 percent of them were replied negatively. Remaining 7.5 percent of the respondents’ child un-immunized Chi-square value (39.14) shows a highly significant association between the education of the respondents and receiving of all recommended vaccines for children. Gamma value shows a strong positive relationship between the variables.Keywords: attitude, childhood, immunization, knowledge, practices
Procedia PDF Downloads 1421795 The Multiple Sclerosis and the Role of Human Herpesvirus 6 in Its Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Human Herpesvirus 6 (HHV-6), and MS is one potential cause that is not well understood. In this study, we aim to summarize the available data on HHV-6 infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " Human Herpesvirus 6 ", and "central nervous system" in the databases PubMed and Google Scholar between 2017 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: HHV 6 tends towards TCD 4+ lymphocytes and enters the CNS due to the weakening of the blood-brain barrier due to inflammatory damage. Following the observation that the HHV-6 U24 protein has a seven amino acid sequence with myelin basic protein, which is one of the main components of the myelin sheath, it could cause a molecular mimicry mechanism followed by cross-reactivity. Reactivation of HHV-6 in the CNS can cause the release of proinflammatory cytokines, including TNF-α, leading to immune-mediated demyelination in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HHV-6 and MS, and that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HHV-6 may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, human herpesvirus 6, central nervous system, autoimmunity
Procedia PDF Downloads 1121794 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1011793 Covid Encephalopathy and New-Onset Seizures in the Context of a Prior Brain Abnormality: A Case Report
Authors: Omar Sorour, Michael Leahy, Thomas Irvine, Vladimir Koren
Abstract:
Introduction: Covid encephalitis is a rare yet dangerous complication, particularly affecting the older and immunocompromised. Symptoms range from confusion to delirium, coma, and seizures. Although neurological manifestations have become more well-characterized in COVID patients, little is known about whether priorneurological abnormalities may predispose patients to COVID encephalopathy. Case Description: A 73 y.o. male with a CT and MRI-confirmed stable, prior 9 mm cavernoma in the right frontal lobe and no past history of seizures was hospitalized with generalized weakness, abdominal pain, nausea, and shortness of breath with subsequent COVID pneumonia. Three days after the initial presentation, the patient developed a spontaneous generalized tonic-clonic seizure consistent with presumed COVID encephalitis, along with somnolence and confusion. A day later, the patient had two other seizure episodes. Follow-up EEG suggested an inter-ictal epileptic focus with sharp waves corresponding to roughly the same location as the patient’s pre-existing cavernoma. The patient’s seizures stopped shortly thereafter, while his encephalopathy continued for days. Conclusion: We illustrate that a pre-existing anatomic cortical abnormality may act as a potential nidus for new-onset seizure activity in the context of suggested COVID encephalopathy. Future studies may further demonstrate that manifestations of COVIDencephalopathy in certain patients may be more predictable than initially assumed.Keywords: cavernoma, covid, encephalopathy, seizures
Procedia PDF Downloads 1721792 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 306