Search results for: cointegration approach in panel data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34625

Search results for: cointegration approach in panel data

33275 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design

Authors: Michel Soto Chalhoub

Abstract:

Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.

Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin

Procedia PDF Downloads 257
33274 Digital Content Strategy (DCS) Detailed Review of the Key Content Components

Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq

Abstract:

The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is to establish an agreed definition for the notion of Digital Content Strategy, which currently does not exist, as DCS is viewed from an excessive number of different angles. A strategic approach to content, nonetheless, is required, both practically and contextually. The researchers, therefore, aimed at attempting to identify the key content components comprising a digital content strategy to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of Digital Content Strategy (DCS) and related aspects, using the PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data was collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources related to the issues discussed, the researchers revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of Digital Content Strategy and can be considered for implementation in a business retail setting.

Keywords: digital content strategy, key content components, websites, digital marketing strategy

Procedia PDF Downloads 146
33273 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: feature fusion, image retrieval, membership function, normalization

Procedia PDF Downloads 347
33272 A Conversational Chatbot for Cricket Analytics

Authors: Kishan Bharadwaj Shridhar

Abstract:

Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.

Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.

Procedia PDF Downloads 4
33271 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 337
33270 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141
33269 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 134
33268 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health

Authors: R. Sanchez-Salcedo, N. H. Voelcker

Abstract:

Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.

Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs

Procedia PDF Downloads 21
33267 An Overview of Water Governance and Management in the Philippines: Some Key Findings

Authors: Sahara Piang Brahim

Abstract:

This paper looks at the current state of water governance in the Philippines. It is mainly descriptive and relies on an analysis of secondary data gathered during the author’s fieldwork as well as those found in available scholarly literature, legal and government policy documents, reports and publicly available information on the official websites of government agencies and departments. This paper finds that despite the Philippines having relatively abundant water resources due to its topographical characteristics, it is facing a number of water-related problems, including the availability of water supply in light of growing water demand, increasing population and urbanization as well as climate change. Another key finding is that the sheer number of agencies, which have overlapping legal mandates and functions in relation to water governance and management, make coordination, planning and data collection difficult especially since they are neither vertically nor horizontally integrated. These findings have obvious implications for water policy and governance in the country. This study also finds that 'predict and control' characterizes the government’s approach to water resources management and allocation. This paper argues that taking such an approach and the existing institutional context into account is quite relevant not only in terms of making sense of how decision-making and policymaking take place but also when contemplating the kinds of alternative governance arrangements that could address water-related issues and challenges and that might work 'best' in the Philippines.

Keywords: Philippines, water governance, water issues, water policy

Procedia PDF Downloads 121
33266 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms

Authors: Khlif Hamadi

Abstract:

Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.

Keywords: CRM practices, innovation capacity, organizational climate, the structural equation

Procedia PDF Downloads 117
33265 Civic Participation as a Promoter of Active Ageing in Europe

Authors: Andrea Vega-Tinoco, Ana I. Gil-Lacruz, Marta Gil-Lacruz

Abstract:

The main objective of this research is to acknowledge whether civic participation affects the well-being of the elderly, thus being a key activity of active aging. It is also of interest to recognize any differences among genders, generational cohorts or country of residence. If a positive relationship is found between civic participation and well-being, the actions that promote this participation will benefit the quality of life of senior citizens. Otherwise, independent action must be taken in the improvement of social and human capital. The sample consists of approximately 50.000 individuals from the European Social Survey (2002-2016). Only individuals born before 1965 in 15 European countries were considered. The sample was distributed according to gender, year of birth, country, level of studies and ESS wave to form pseudo-panel data cohorts, leaving a total of 1.318 observations. The data were analyzed through a Cross-Lagged Model using Fixed-Effects. A bidirectional association is observed between the civic participation and well-being variables. However, participating in the past seems to have a higher impact on today’s health, happiness and life satisfaction than the other way around. Furthermore, 26% of the respondents expressed to be satisfied with their life, 27% to be happy and 57% to have good health. On the other hand, 49% have participated civically in the last year, being the most common activities: signing petitions, boycotting products and volunteer work in non-political organizations. A slight trend of BabyBoomers and men towards greater participation can be observed, as well as a higher impact of this participation on their well-being. In addition, international differences exhibit a stronger relation for Nordic, East European and Mediterranean countries. The given results support the hypothesis that civic participation is a promoter of well-being for the elderly. This paper positively highlights the activity of involving in political and non-political organizations, as well as wearing badges. At any rate, almost all forms of civic participation show a positive relationship with well-being and should therefore be promoted, although differences between countries must be taken into consideration.

Keywords: active aging, civic participation, Europe, well-being

Procedia PDF Downloads 84
33264 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
33263 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation

Authors: Victor Oyewumi Ogunbiyi

Abstract:

Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.

Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja

Procedia PDF Downloads 82
33262 Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index

Authors: Ujjwala Bhand, Mridula Goel

Abstract:

Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.

Keywords: innovation, global competitiveness index, BRICS, economic growth

Procedia PDF Downloads 270
33261 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 416
33260 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 62
33259 Isolation, Characterization and Application of Bacteriophages on the Biocontrol of Listeria monocytogenes in Soft Cheese

Authors: Vinicius Buccelli Ribeiro, Maria Teresa Destro, Mariza Landgraf

Abstract:

Bacteriophages are one of the most abundant replicating entities on Earth and can be found everywhere in which their hosts live and there are reports regarding isolation from different niches such as soil and foods. Since studies are moving forward with regard to biotechnology area, different research projects are being performed focusing on the phage technology and its use by the food industry. This study aimed to evaluate a cocktail (LP501) of phages isolated in Brazil for its lytic potential against Listeria monocytogenes. Three bacteriophages (LP05, LP12 and LP20) were isolated from soil samples and all of them showed 100% lysis against a panel of 10 L. monocytogenes strains representing different serotypes of this pathogen. A mix of L. monocytogenes 1/2a and 4b were inoculated in soft cheeses (approximately 105 cfu/cm2) with the phage cocktail added thereafter (1 x 109 PFU/cm2). Samples were analyzed immediately and then stored at 10°C for ten days. At 30 min post-infection, the cocktail reduced L. monocytogenes counts approximately 1.5 logs, compared to controls without bacteriophage. The treatment produced a statistically significant decrease in the counts of viable cells (p < 0.05) and in all assays performed we observed a decrease of up to 4 logs of L. monocytogenes. This study will make available to the international community behavioral and molecular data regarding bacteriophages present in soil samples in Brazil. Furthermore, there is the possibility to apply this new cocktail of phages in different food products to combat L. monocytogenes.

Keywords: bacteriophages, biocontrol, listeria monocytogenes, soft cheese

Procedia PDF Downloads 362
33258 Life Course Events, Residential and Job Relocation and Commute Time in Australian Cities

Authors: Solmaz Jahed Shiran, Elizabeth Taylor, John Hearne

Abstract:

Over the past decade a growing body of research, known as mobility biography approach has emerged that focuses on changes in travel behaviour over the life course of individuals. Mobility biographies suggest that changes in travel behaviour have a certain relation to important key events in life courses such as residential relocation, workplace changes, marriage and the birth of children. Taking this approach as the theoretical background, this study uses data from the Household, Income and Labor Dynamics Survey in Australia (HILDA) to model a set of life course events and their interaction with the commute time. By analysing longitudinal data, it is possible to assign different key events during the life course to change a person’s travel behaviour. Changes in the journey-to-work travel time is used as an indication of travel behaviour change in this study. Results of a linear regression model for change in commute time show a significant influence from socio-demographic factors like income and age, the previous home-to-work commute time and remoteness of the residence. Residential relocation and job change have significant influences on commute time. Other life events such as birth of a child, marriage and divorce or separation have also a strong impact on commute time change. Overall, the research confirms previous studies of links between life course events and travel behaviour.

Keywords: life course events, residential mobility, travel behaviour, commute time, job change

Procedia PDF Downloads 206
33257 Mapping Feature Models to Code Using a Reference Architecture: A Case Study

Authors: Karam Ignaim, Joao M. Fernandes, Andre L. Ferreira

Abstract:

Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain.

Keywords: feature location, feature models, mapping, software product lines, traceability

Procedia PDF Downloads 127
33256 Moderating Effect of Owner's Influence on the Relationship between the Probability of Client Failure and Going Concern Opinion Issuance

Authors: Mohammad Noor Hisham Osman, Ahmed Razman Abdul Latiff, Zaidi Mat Daud, Zulkarnain Muhamad Sori

Abstract:

The problem that Malaysian auditors do not issue going concern opinion (GC opinion) to seriously financially distressed companies is still a pressing issue. Policy makers, particularly the Financial Statement Review Committee (FSRC) of Malaysian Institute of Accountant, have raised this issue as early as in 2009. Similar problem happened in the US, UK, and many developing countries. It is important for auditors to issue GC opinion properly because such opinion is one signal about the viability of a company much needed by stakeholders. There are at least two unanswered questions or research gaps in the literature on determinants of GC opinion. Firstly, is client’s probability of failure associated with GC opinion issuance? Secondly, to what extent influential owners (management, family, and institution) moderate the association between client probability of failure and GC opinion issuance. The objective of this study is, therefore, twofold; (1) To examine the extent of the relationship between the probability of client failure and the issuance of GC opinion and (2) To examine the level of management, family, and institutional ownerships moderate the association between client probability of failure and the issuance of GC opinion. This study is quantitative in nature, and the sources of data are secondary (mainly company’s annual reports). A total of four hypotheses have been developed and tested on data accumulated from annual reports of seriously financially distressed Malaysian public listed companies. Data from 2006 to 2012 on a sample of 644 observations have been analyzed using panel logistic regression. It is found that certainty (rather than probability) of client failure affects the issuance of GC opinion. In addition, it is found that only the level of family ownership does positively moderate the relationship between client probability of failure and GC opinion issuance. This study is a contribution to auditing literature as its findings can enhance our understanding about audit quality; particularly on the variables that are associated with the issuance of GC opinion. The findings of this study shed light on the roles family owners in GC opinion issuance process, and this would open ways for the researcher to suggest measures that can be used to tackle the problem of auditors do not want to issue GC opinion to financially distressed clients. The measures to be suggested can be useful to policy makers in formulating future promulgations.

Keywords: audit quality, auditing, auditor characteristics, going concern opinion, Malaysia

Procedia PDF Downloads 261
33255 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 127
33254 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models

Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara

Abstract:

In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.

Keywords: general metric, unsupervised learning, classification, intersection over union

Procedia PDF Downloads 50
33253 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 79
33252 The Social Aspects of Code-Switching in Online Interaction: The Case of Saudi Bilinguals

Authors: Shirin Alabdulqader

Abstract:

This research aims to investigate the concept of code-switching (CS) between English, Arabic, and the CS practices of Saudi online users via a Translanguaging (TL) lens for more inclusive view towards the nature of the data from the study. It employs Digitally Mediated Communication (DMC), specifically the WhatsApp and Twitter platforms, in order to understand how the users employ online resources to communicate with others on a daily basis. This project looks beyond language and considers the multimodal affordances (visual and audio means) that interlocutors utilise in their online communicative practices to shape their online social existence. This exploratory study is based on a data-driven interpretivist epistemology as it aims to understand how meaning (reality) is created by individuals within different contexts. This project used a mixed-method approach, combining a qualitative and a quantitative approach. In the former, data were collected from online chats and interview responses, while in the latter a questionnaire was employed to understand the frequency and relations between the participants’ linguistic and non-linguistic practices and their social behaviours. The participants were eight bilingual Saudi nationals (both men and women, aged between 20 and 50 years old) who interacted with others online. These participants provided their online interactions, participated in an interview and responded to a questionnaire. The study data were gathered from 194 WhatsApp chats and 122 Tweets. These data were analysed and interpreted according to three levels: conversational turn taking and CS; the linguistic description of the data; and CS and persona. This project contributes to the emerging field of analysing online Arabic data systematically, and the field of multimodality and bilingual sociolinguistics. The findings are reported for each of the three levels. For conversational turn taking, the CS analysis revealed that it was used to accomplish negotiation and develop meaning in the conversation. With regard to the linguistic practices of the CS data, the majority of the code-switched words were content morphemes. The third level of data interpretation is CS and its relationship with identity; two types of identity were indexed; absolute identity and contextual identity. This study contributes to the DMC literature and bridges some of the existing gaps. The findings of this study are that CS by its nature, and most of the findings, if not all, support the notion of TL that multiliteracy is one’s ability to decode multimodal communication, and that this multimodality contributes to the meaning. Either this is applicable to the online affordances used by monolinguals or multilinguals and perceived not only by specific generations but also by any online multiliterates, the study provides the linguistic features of CS utilised by Saudi bilinguals and it determines the relationship between these features and the contexts in which they appear.

Keywords: social media, code-switching, translanguaging, online interaction, saudi bilinguals

Procedia PDF Downloads 136
33251 A Genre-Based Approach to the Teaching of Pronunciation

Authors: Marden Silva, Danielle Guerra

Abstract:

Some studies have indicated that pronunciation teaching hasn’t been paid enough attention by teachers regarding EFL contexts. In particular, segmental and suprasegmental features through genre-based approach may be an opportunity on how to integrate pronunciation into a more meaningful learning practice. Therefore, the aim of this project was to carry out a survey on some aspects related to English pronunciation that Brazilian students consider more difficult to learn, thus enabling the discussion of strategies that can facilitate the development of oral skills in English classes by integrating the teaching of phonetic-phonological aspects into the genre-based approach. Notions of intelligibility, fluency and accuracy were proposed by some authors as an ideal didactic sequence. According to their proposals, basic learners should be exposed to activities focused on the notion of intelligibility as well as intermediate students to the notion of fluency, and finally more advanced ones to accuracy practices. In order to test this hypothesis, data collection was conducted during three high school English classes at Federal Center for Technological Education of Minas Gerais (CEFET-MG), in Brazil, through questionnaires and didactic activities, which were recorded and transcribed for further analysis. The genre debate was chosen to facilitate the oral expression of the participants in a freer way, making them answering questions and giving their opinion about a previously selected topic. The findings indicated that basic students demonstrated more difficulty with aspects of English pronunciation than the others. Many of the intelligibility aspects analyzed had to be listened more than once for a better understanding. For intermediate students, the speeches recorded were considerably easier to understand, but nevertheless they found it more difficult to pronounce the words fluently, often interrupting their speech to think about what they were going to say and how they would talk. Lastly, more advanced learners seemed to express their ideas more fluently, but still subtle errors related to accuracy were perceptible in speech, thereby confirming the proposed hypothesis. It was also seen that using genre-based approach to promote oral communication in English classes might be a relevant method, considering the socio-communicative function inherent in the suggested approach.

Keywords: EFL, genre-based approach, oral skills, pronunciation

Procedia PDF Downloads 130
33250 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance

Authors: Aleksandra Czubek

Abstract:

As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.

Keywords: ip, technology, copyright, data, infringement, comparative analysis

Procedia PDF Downloads 20
33249 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement

Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura

Abstract:

The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.

Keywords: big data, dashboards, floating population, smart city, urban management solutions

Procedia PDF Downloads 290
33248 Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

Authors: Adam L. Yanagihara, Yong Seok Park

Abstract:

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Keywords: eddy current brake, engineering design, design synthesis, human factors engineering

Procedia PDF Downloads 125
33247 Dynamic Externalities and Regional Productivity Growth: Evidence from Manufacturing Industries of India and China

Authors: Veerpal Kaur

Abstract:

The present paper aims at investigating the role of dynamic externalities of agglomeration in the regional productivity growth of manufacturing sector in India and China. Taking 2-digit level manufacturing sector data of states and provinces of India and China respectively for the period of 1998-99 to 2011-12, this paper examines the effect of dynamic externalities namely – Marshall-Arrow-Romer (MAR) specialization externalities, Jacobs’s diversity externalities, and Porter’s competition externalities on regional total factor productivity growth (TFPG) of manufacturing sector in both economies. Regressions have been carried on pooled data for all 2-digit manufacturing industries for India and China separately. The estimation of Panel has been based on a fixed effect by sector model. The results of econometric exercise show that labour-intensive industries in Indian regional manufacturing benefit from diversity externalities and capital intensive industries gain more from specialization in terms of TFPG. In China, diversity externalities and competition externalities hold better prospectus for regional TFPG in both labour intensive and capital intensive industries. But if we look at results for coastal and non-coastal region separately, specialization tends to assert a positive effect on TFPG in coastal regions whereas it has a negative effect on TFPG of coastal regions. Competition externalities put a negative effect on TFPG of non-coastal regions whereas it has a positive effect on TFPG of coastal regions. Diversity externalities made a positive contribution to TFPG in both coastal and non-coastal regions. So the results of the study postulate that the importance of dynamic externalities should not be examined by pooling all industries and all regions together. This could hold differential implications for region specific and industry-specific policy formulation. Other important variables explaining regional level TFPG in both India and China have been the availability of infrastructure, level of competitiveness, foreign direct investment, exports and geographical location of the region (especially in China).

Keywords: China, dynamic externalities, India, manufacturing, productivity

Procedia PDF Downloads 123
33246 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control

Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed

Abstract:

This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).

Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model

Procedia PDF Downloads 444