Search results for: virtual machine
2679 Morphological Analysis of Manipuri Language: Wahei-Neinarol
Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh
Abstract:
Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF
Procedia PDF Downloads 3262678 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 682677 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 5522676 Sustainability and Awareness with Natural Dyes in Textile
Authors: Recep Karadag
Abstract:
Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles.Keywords: antibacterial, antimicrobial, natural dyes, sustainability
Procedia PDF Downloads 5242675 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3632674 I, Me and the Bot: Forming a Theory of Symbolic Interactivity with a Chatbot
Authors: Felix Liedel
Abstract:
The rise of artificial intelligence has numerous and far-reaching consequences. In addition to the obvious consequences for entire professions, the increasing interaction with chatbots also has a wide range of social consequences and implications. We are already increasingly used to interacting with digital chatbots, be it in virtual consulting situations, creative development processes or even in building personal or intimate virtual relationships. A media-theoretical classification of these phenomena has so far been difficult, partly because the interactive element in the exchange with artificial intelligence has undeniable similarities to human-to-human communication but is not identical to it. The proposed study, therefore, aims to reformulate the concept of symbolic interaction in the tradition of George Herbert Mead as symbolic interactivity in communication with chatbots. In particular, Mead's socio-psychological considerations will be brought into dialog with the specific conditions of digital media, the special dispositive situation of chatbots and the characteristics of artificial intelligence. One example that illustrates this particular communication situation with chatbots is so-called consensus fiction: In face-to-face communication, we use symbols on the assumption that they will be interpreted in the same or a similar way by the other person. When briefing a chatbot, it quickly becomes clear that this is by no means the case: only the bot's response shows whether the initial request corresponds to the sender's actual intention. This makes it clear that chatbots do not just respond to requests. Rather, they function equally as projection surfaces for their communication partners but also as distillations of generalized social attitudes. The personalities of the chatbot avatars result, on the one hand, from the way we behave towards them and, on the other, from the content we have learned in advance. Similarly, we interpret the response behavior of the chatbots and make it the subject of our own actions with them. In conversation with the virtual chatbot, we enter into a dialog with ourselves but also with the content that the chatbot has previously learned. In our exchanges with chatbots, we, therefore, interpret socially influenced signs and behave towards them in an individual way according to the conditions that the medium deems acceptable. This leads to the emergence of situationally determined digital identities that are in exchange with the real self but are not identical to it: In conversation with digital chatbots, we bring our own impulses, which are brought into permanent negotiation with a generalized social attitude by the chatbot. This also leads to numerous media-ethical follow-up questions. The proposed approach is a continuation of my dissertation on moral decision-making in so-called interactive films. In this dissertation, I attempted to develop a concept of symbolic interactivity based on Mead. Current developments in artificial intelligence are now opening up new areas of application.Keywords: artificial intelligence, chatbot, media theory, symbolic interactivity
Procedia PDF Downloads 562673 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning
Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang
Abstract:
Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.Keywords: intelligence, software architecture, re-architecting, software reuse, High level design
Procedia PDF Downloads 1202672 Ebola Virus Glycoprotein Inhibitors from Natural Compounds: Computer-Aided Drug Design
Authors: Driss Cherqaoui, Nouhaila Ait Lahcen, Ismail Hdoufane, Mehdi Oubahmane, Wissal Liman, Christelle Delaite, Mohammed M. Alanazi
Abstract:
The Ebola virus is a highly contagious and deadly pathogen that causes Ebola virus disease. The Ebola virus glycoprotein (EBOV-GP) is a key factor in viral entry into host cells, making it a critical target for therapeutic intervention. Using a combination of computational approaches, this study focuses on the identification of natural compounds that could serve as potent inhibitors of EBOV-GP. The 3D structure of EBOV-GP was selected, with missing residues modeled, and this structure was minimized and equilibrated. Two large natural compound databases, COCONUT and NPASS, were chosen and filtered based on toxicity risks and Lipinski’s Rule of Five to ensure drug-likeness. Following this, a pharmacophore model, built from 22 reported active inhibitors, was employed to refine the selection of compounds with a focus on structural relevance to known Ebola inhibitors. The filtered compounds were subjected to virtual screening via molecular docking, which identified ten promising candidates (five from each database) with strong binding affinities to EBOV-GP. These compounds were then validated through molecular dynamics simulations to evaluate their binding stability and interactions with the target. The top three compounds from each database were further analyzed using ADMET profiling, confirming their favorable pharmacokinetic properties, stability, and safety. These results suggest that the selected compounds have the potential to inhibit EBOV-GP, offering new avenues for antiviral drug development against the Ebola virus.Keywords: EBOV-GP, Ebola virus glycoprotein, high-throughput drug screening, molecular docking, molecular dynamics, natural compounds, pharmacophore modeling, virtual screening
Procedia PDF Downloads 242671 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 1282670 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics
Authors: Luisa Carrer, Lorenzo De Masi
Abstract:
In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.Keywords: gender equality, gender norms index, Facebook, machine learning, politics
Procedia PDF Downloads 792669 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1612668 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1952667 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism
Authors: Maggie Mosher, Adam Carreon, Sean Smith
Abstract:
A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality
Procedia PDF Downloads 1102666 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1472665 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1102664 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling
Procedia PDF Downloads 1052663 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 792662 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3242661 A Linearly Scalable Family of Swapped Networks
Authors: Richard Draper
Abstract:
A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology
Procedia PDF Downloads 1272660 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1522659 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 3222658 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants
Authors: Mehmet Akif Bütüner, İlhan Koşalay
Abstract:
Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.Keywords: hydroelectric, governor, anomaly detection, machine learning, regression
Procedia PDF Downloads 992657 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 4252656 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 912655 Overview of Resources and Tools to Bridge Language Barriers Provided by the European Union
Authors: Barbara Heinisch, Mikael Snaprud
Abstract:
A common, well understood language is crucial in critical situations like landing a plane. For e-Government solutions, a clear and common language is needed to allow users to successfully complete transactions online. Misunderstandings here may not risk a safe landing but can cause delays, resubmissions and drive costs. This holds also true for higher education, where misunderstandings can also arise due to inconsistent use of terminology. Thus, language barriers are a societal challenge that needs to be tackled. The major means to bridge language barriers is translation. However, achieving high-quality translation and making texts understandable and accessible require certain framework conditions. Therefore, the EU and individual projects take (strategic) actions. These actions include the identification, collection, processing, re-use and development of language resources. These language resources may be used for the development of machine translation systems and the provision of (public) services including higher education. This paper outlines some of the existing resources and indicate directions for further development to increase the quality and usage of these resources.Keywords: language resources, machine translation, terminology, translation
Procedia PDF Downloads 3202654 Advancing Healthcare Access and Efficiency: Objectives of Telecare and Telehealth
Authors: Munachiso A. Muoneke
Abstract:
Telecare and telehealth are transformative innovations that expand healthcare access, improve service efficiency and enhance patient outcomes. This study explores the core objectives of telecare and telehealth, focusing on their role in overcoming geographical and logistical barriers to healthcare delivery. By leveraging digital platforms, remote monitoring tools and virtual consultations, these technologies address the pressing challenges of modern healthcare systems, including provider shortages and escalating costs. The research begins with an overview of telecare and telehealth objectives, highlighting their potential to bridge care gaps in underserved regions. It examines key methodologies, such as the integration of wearable devices, video conferencing and secure patient data platforms, to enhance real-time patient monitoring and personalized care. The study employs case studies and statistical analyses to compare patient outcomes in traditional care versus telehealth enables models. Preliminary findings demonstrate that telecare and telehealth significantly reduce hospital readmissions, improve chronic disease management and foster proactive health engagement. These outcomes emphasize the importance of aligning telehealth initiatives with healthcare policies and infrastructural investments. To conclude, the study lays emphasis on telecare and telehealth as indispensable tools for achieving universal health coverage. By fostering collaboration among healthcare providers, policy makers and technology developers, these innovations hold the potential to create a more accessible, efficient and patient-centered healthcare ecosystem.Keywords: healthcare access and efficiency, remote monitoring, virtual consultations, telecare and telehealth innovations
Procedia PDF Downloads 62653 Developing a Quality Mentor Program: Creating Positive Change for Students in Enabling Programs
Authors: Bianca Price, Jennifer Stokes
Abstract:
Academic and social support systems are critical for students in enabling education; these support systems have the potential to enhance the student experience whilst also serving a vital role for student retention. In the context of international moves toward widening university participation, Australia has developed enabling programs designed to support underrepresented students to access to higher education. The purpose of this study is to examine the effectiveness of a mentor program based within an enabling course. This study evaluates how the mentor program supports new students to develop social networks, improve retention, and increase satisfaction with the student experience. Guided by Social Learning Theory (SLT), this study highlights the benefits that can be achieved when students engage in peer-to-peer based mentoring for both social and learning support. Whilst traditional peer mentoring programs are heavily based on face-to-face contact, the present study explores the difference between mentors who provide face-to-face mentoring, in comparison with mentoring that takes place through the virtual space, specifically via a virtual community in the shape of a Facebook group. This paper explores the differences between these two methods of mentoring within an enabling program. The first method involves traditional face-to-face mentoring that is provided by alumni students who willingly return to the learning community to provide social support and guidance for new students. The second method requires alumni mentor students to voluntarily join a Facebook group that is specifically designed for enabling students. Using this virtual space, alumni students provide advice, support and social commentary on how to be successful within an enabling program. Whilst vastly different methods, both of these mentoring approaches provide students with the support tools needed to enhance their student experience and improve transition into University. To evaluate the impact of each mode, this study uses mixed methods including a focus group with mentors, in-depth interviews, as well as engaging in netnography of the Facebook group ‘Wall’. Netnography is an innovative qualitative research method used to interpret information that is available online to better understand and identify the needs and influences that affect the users of the online space. Through examining the data, this research will reflect upon best practice for engaging students in enabling programs. Findings support the applicability of having both face-to-face and online mentoring available for students to assist enabling students to make a positive transition into University undergraduate studies.Keywords: enabling education, mentoring, netnography, social learning theory
Procedia PDF Downloads 1222652 The Effect of Rowing Exercise on Elderly Health
Authors: Rachnavy Pornthep, Khaothin Thawichai
Abstract:
The purpose of this paper was to investigate the effects of rowing ergometer exercise on older persons health. The subjects were divided into two groups. Group 1 was control group (10 male and 10 female) Group 2 was experimental group (10 male and 10 female). The time for study was 12 week. Group 1 engage in normal daily activities Group 2 Training with rowing machine for 20 minutes three days a week. The average age of the experimental group was 73.7 years old, mean weight 55.4 kg, height 154.8 cm in the control group, mean age was 74.95 years, mean weight 48.6 kg, mean height 153.85 cm. Physical fitness test composted of body size, flexibility, Strength, muscle endurance and cardiovascular endurance. The comparison between the experimental and control groups before training showed that body weight, body mass index and waist to hip ratio were significantly different. The flexibility, strength, cardiovascular endurance was not significantly different. The comparison between the control group and the experimental group after training showed that body weight, body mass index and cardiovascular endurance were significantly different. The ratio of waist to hips, flexibility and muscular strength were not significantly different. Comparison of physical fitness before training and after training of the control group showed that body weight, flexibility (Sit and reach) and muscular strength (30 – Second chair stand) were significantly different. Body mass index, waist to hip ratio, muscles flexible (Shoulder girdle flexibility), muscle strength (30 – Second arm curl) and the cardiovascular endurance were not significantly difference. Comparison of physical fitness before training and after training the experimental group showed that waist to hip ratio, flexibility (sit and reach) muscle strength (30 – Second chair stand), cardiovascular endurance (Standing leg raises - up to 2 minutes) were significantly different. The Body mass index and the flexibility (Shoulder girdle flexibility) no significantly difference. The study found that exercising with rowing machine can improve the physical fitness of the elderly, especially the cardiovascular endurance, corresponding with the past research on the effects of exercise in the elderly with different exercise such as cycling, treadmill, walking on the elliptical machine. Therefore, we can conclude that exercise by using rowing machine can improve cardiovascular system and flexibility in the elderly.Keywords: effect, rowing, exercise, elderly
Procedia PDF Downloads 4972651 The Antecedents of Internet Addiction toward Smartphone Usage
Authors: Pui-Lai To, Chechen Liao, Hen-Yi Huang
Abstract:
Twenty years after Internet development, scholars have started to identify the negative impacts brought by the Internet. Overuse of Internet could develop Internet dependency and in turn cause addiction behavior. Therefore understanding the phenomenon of Internet addiction is important. With the joint efforts of experts and scholars, Internet addiction has been officially listed as a symptom that affects public health, and the diagnosis, causes and treatment of the symptom have also been explored. On the other hand, in the area of smartphone Internet usage, most studies are still focusing on the motivation factors of smartphone usage. Not much research has been done on smartphone Internet addiction. In view of the increasing adoption of smartphones, this paper is intended to find out whether smartphone Internet addiction exists in modern society or not. This study adopted the research methodology of online survey targeting users with smartphone Internet experience. A total of 434 effective samples were recovered. In terms of data analysis, Partial Least Square (PLS) in Structural Equation Modeling (SEM) is used for sample analysis and research model testing. Software chosen for statistical analysis is SPSS 20.0 for windows and SmartPLS 2.0. The research result successfully proved that smartphone users who access Internet service via smartphone could also develop smartphone Internet addiction. Factors including flow experience, depression, virtual social support, smartphone Internet affinity and maladaptive cognition all have significant and positive influence on smartphone Internet addiction. In the scenario of smartphone Internet use, descriptive norm has a positive and significant influence on perceived playfulness, while perceived playfulness also has a significant and positive influence on flow experience. Depression, on the other hand, is negatively influenced by actual social support and positive influenced by the virtual social support.Keywords: internet addiction, smartphone usage, social support, perceived playfulness
Procedia PDF Downloads 2472650 Managing Student Internationalization during the COVID-19 Pandemic: Three Approaches That Should Endure beyond the Present
Authors: David Cobham
Abstract:
In higher education, a great degree of importance is placed on the internationalization of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks and connections, and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment through learning approaches, assessment methods, and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country, either to study, to work, to volunteer or to gain cultural and social enhancement, has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience, and adopting collaborative online projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learned and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways and that they will persist beyond the present to become part of the 'new normal' for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.Keywords: higher education management, internationalization, transnational education, virtual mobility
Procedia PDF Downloads 106