Search results for: open space
5195 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound
Authors: Mustafa Kavraz
Abstract:
This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.Keywords: sound absorber, room model, objective parameters of sound, jnd
Procedia PDF Downloads 3765194 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects
Authors: Muhammad Khairi bin Sulaiman
Abstract:
The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning
Procedia PDF Downloads 845193 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table
Authors: Mouslem Damkhi
Abstract:
This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.Keywords: combinatorics, enumeration, graph, tournament
Procedia PDF Downloads 1235192 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis
Authors: Nesli Aydin
Abstract:
Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.Keywords: decision making, economic viability, environmentally friendliness, waste management systems
Procedia PDF Downloads 3065191 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 1235190 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1295189 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom
Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan
Abstract:
Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.Keywords: circle work, relational pedagogies, decolonization, distance education
Procedia PDF Downloads 765188 Investigation of Heat Transfer by Natural Convection in an Open Channel
Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen
Abstract:
Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02 mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.Keywords: natural heat transfer convection, constant heat flux, open channels, heat transfer
Procedia PDF Downloads 3945187 The Factors Affecting the Use of Massive Open Online Courses in Blended Learning by Lecturers in Universities
Authors: Taghreed Alghamdi, Wendy Hall, David Millard
Abstract:
Massive Open Online Courses (MOOCs) have recently gained widespread interest in the academic world, starting a wide range of discussion of a number of issues. One of these issues, using MOOCs in teaching and learning in the higher education by integrating MOOCs’ contents with traditional face-to-face activities in blended learning format, is called blended MOOCs (bMOOCs) and is intended not to replace traditional learning but to enhance students learning. Most research on MOOCs has focused on students’ perception and institutional threats whereas there is a lack of published research on academics’ experiences and practices. Thus, the first aim of the study is to develop a classification of blended MOOCs models by conducting a systematic literature review, classifying 19 different case studies, and identifying the broad types of bMOOCs models namely: Supplementary Model and Integrated Model. Thus, the analyses phase will emphasize on these different types of bMOOCs models in terms of adopting MOOCs by lecturers. The second aim of the study is to improve the understanding of lecturers’ acceptance of bMOOCs by investigate the factors that influence academics’ acceptance of using MOOCs in traditional learning by distributing an online survey to lecturers who participate in MOOCs platforms. These factors can help institutions to encourage their lecturers to integrate MOOCs with their traditional courses in universities.Keywords: acceptance, blended learning, blended MOOCs, higher education, lecturers, MOOCs, professors
Procedia PDF Downloads 1315186 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition
Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur
Abstract:
Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission
Procedia PDF Downloads 2735185 Connectivity: Connecting ActivityRethinking Streets as Public Space under the Six Dimensions of Urban Space Design in the Context of Bangladesh
Authors: Manal Anis, Bin Bakhti Sayeed
Abstract:
With the encroachment of automobile upon our communities for decades and the concomitant urban sprawl resulting in a loss of public place, it was only a matter of time before people, realizing the role of streets in stimulating urban prosperity, would start reclaiming them to rebuild their communities. In order for this restoration of communities to take effect it is imperative that streets be freed from the dominance of motor vehicles. A holistic approach to pedestrian-friendly street environment can help build communities that embody the cities in which they are found. While the developed countries are finding more and more innovative ways to integrate walkable streets to foster communal living, the developing countries still have a long way to go. Since Dhaka is still struggling to balance the growing needs of accommodating automobiles for increased population with the loss of urban community life that comes with it, it is high time that alternate approaches are looked into. This study aims to understand streets as a living corridor through which one discovers and identifies with the city. The research area is chosen to be Manik Mia Avenue, overlooking the South Plaza of the National Parliament Building in Dhaka city. Being the site of supreme power, it is precisely this symbolic importance that the National Parliament Building has in the psyche of Bangladeshis, which has given Manik Mia Avenue a significant place in the country’s history. Above all, being an avenue it is essentially a neutral territory, universally accessible, inclusive and pluralist. The needs of the Avenue’s frequent users are analyzed with the help of a multi-method approach to survey consisting of an empirical study, a questionnaire survey and interview with relevant users. The research then tries to understand the concept of walkability by exploring the different ways in which the built environment influences walking. For this analysis, the six dimensions of Matthew Carmona are taken as a guideline for a holistic approach toward the different interacting facets of an urban public space. Based on the studies, a set of criteria is proposed to evaluate, plan and design streets that are more contextual in nature. The study concludes with how the existing street patterns of Dhaka city can be rethought and redesigned to cater to peoples’ need for a public place. The proposal is meant to be an inspiration for further studies in this respect in the context of Bangladesh.Keywords: public space, six dimensions, street, urban, walkability
Procedia PDF Downloads 2235184 Wave Interaction with Single and Twin Vertical and Sloped Porous Walls
Authors: Mohamad Alkhalidi, S. Neelamani, Noor Alanjari
Abstract:
The main purpose of harbors and marinas is to create a calm and safe docking space for marine vessels. Standard rubble mound breakwaters, although widely used, occupy port space and require large amounts of stones or rocks. Kuwait does not have good quality stone, so they are imported at a very high cost. Therefore, there is a need for a new wave energy dissipating structure where stones and rocks are scarce. While permeable slotted vertical walls have been proved to be a suitable alternative to rubble mound breakwaters, the introduction of sloped slotted walls may be more efficient in dissipating wave energy. For example, two slotted barriers with 60degree inclination may be equivalent to three vertical slotted barriers from wave energy dissipation point of view. A detailed physical model study is carried out to determine the effects of slope angle, porosity, and a number of walls on wave energy dissipation for a wide range of random and regular waves. The results of this study can be used to improve and optimize energy dissipation and reduce construction cost.Keywords: porosity, slope, wave reflection, wave transmission
Procedia PDF Downloads 2915183 Pollution of Cadmium in Green Space of Rasht City and Environmental Health
Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh
Abstract:
The urban green space and environment should be considered to be among the most fundamental elements of the sustainability of natural and human life in the new citizenship. The present research is intended to evaluate the impact of irrigation using urban wastewater of Cadmium (Cd) in the soil and leaves of the pine trees of Rasht in the forest territories of Rasht. For this purpose, following the exact specification of the geographical and topographical attributes of under treatment area, 100 sample trees were implemented randomly –systematically in each compound studied. Approaching the end of growth season, five trees were selected randomly in each of the plats and samples of leaves were collected from the parts near to the end of the crown and the part which was adjacent to the light. At the foot of each of the trees selected, a soil profile was dug and samples of soil were extracted from three depths of 0-20, centimeters. The measurements done in the laboratory showed that the density of nutritious elements of the samples of leaf and soil in the compound irrigated with wastewater .The results of the present research suggest that urban can be used as a source of irrigation whereas muck can be employed in forestation and irrigation with precise and particular supervision and control.Keywords: irrigation, forestation, urban waste water, pine, wastewater
Procedia PDF Downloads 4565182 Comparing the Quality of Electronic and Paper Do-Not-Resucscitate Forms in Hosptail
Authors: Anmol Patel
Abstract:
Cardiopulmonary resuscitation is medical intervention which should be considered for all inpatients; with a patient centred approach, open communication and accurate documentation of clinical decisions. National enquiries have shown that in a significant number of cases CPR was attempted when it was considered inappropriate. In these circumstances attempting to prevent a natural death and subjecting a patient to trauma at the end of life would deprive them of a dignified death. Anticipatory “do not attempt CPR (DNACPR)” decisions aim to prevent this for those considered appropriate. As a legal document, these forms are required to be completed accurately and thoroughly. The aim of this study was to evaluate the difference in quality of DNACPR forms completed using electronic versus paper formats. A retrospective review of DNACPR forms and related documentation was completed in two District General Hospitals in South-East England, one of which uses electronic forms, while the other uses paper red forms. 50 completed forms from each hospital were analysed to assess for legibility, and quality of completion of all subsections of the form, including communications with family, relatives and the Multidisciplinary team. The hospital using paper forms showed a 40-44% rate of completion of sections relating to communication with patients and family, compared to 70% with the hospital using electronic forms. Similar trends were observed with other sections of the form. Conclusion: This study suggests that the implementation of electronic DNACPR forms significantly improves clinical practice and promotes better open communication with patients, family and the MDT.Keywords: DNACPR, resuscitation, DNAR, patient communication
Procedia PDF Downloads 795181 Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum
Authors: D. S. Mohale, A. V. Chandewar
Abstract:
Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.Keywords: anxiety, anxieolytic, social isolation, nerium indicum, kaner
Procedia PDF Downloads 3095180 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 755179 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation
Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau
Abstract:
In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa
Procedia PDF Downloads 1585178 The Optimal Utilization of Centrally Located Land: The Case of the Bloemfontein Show Grounds
Authors: D. F. Coetzee, M. M. Campbell
Abstract:
The urban environment is constantly expanding and the optimal use of centrally located land is important in terms of sustainable development. Bloemfontein has expanded and this affects land-use functions. The purpose of the study is to examine the possible shift in location of the Bloemfontein show grounds to utilize the space of the grounds more effectively in context of spatial planning. The research method used is qualitative case study research with the case study on the Bloemfontein show grounds. The purposive sample consisted of planners who work or consult in the Bloemfontein area and who are registered with the South African Council for Planners (SACPLAN). Interviews consisting of qualitative open-ended questionnaires were used. When considering relocation the social and economic aspects need to be considered. The findings also indicated a majority consensus that the property can be utilized more effectively in terms of mixed land use. The showground development trust compiled a master plan to ensure that the property is used to its full potential without the relocation of the showground function itself. This Master Plan can be seen as the next logical step for the showground property itself, and it is indeed an attempt to better utilize the land parcel without relocating the show function. The question arises whether the proposed Master Plan is a permanent solution or whether it is merely delaying the relocation of the core showground function to another location. For now, it is a sound solution, making the best out of the situation at hand and utilizing the property more effectively. If the show grounds were to be relocated the researcher proposed a recommendation of mixed-use development, in terms an expansion on the commercial business/retail, together with a sport and recreation function. The show grounds in Bloemfontein are well positioned to capitalize on and to meet the needs of the changing economy, while complimenting the future economic growth strategies of the city if the right plans are in place.Keywords: centrally located land, spatial planning, show grounds, central business district
Procedia PDF Downloads 4175177 A Unified Webcam Proctoring Solution on Edge
Authors: Saw Thiha, Jay Rajasekera
Abstract:
A boom in video conferencing generated millions of hours of video data daily to be analyzed. However, such enormous data pose certain scalability issues to be analyzed efficiently, let alone do it in real-time, as online conferences can involve hundreds of people and can last for hours. This paper proposes an efficient online proctoring solution that can analyze the online conferences real-time on edge devices such as Android, iOS, and desktops. Since the computation can be done upfront on the devices where online conferences take place, it can scale well without requiring intensive resources such as GPU servers and complex cloud infrastructure. According to the linear models, face orientation does indeed impact the perceived eye openness. Also, the proposed z score facial landmark standardization was proven to be functional in detecting face orientation and contributed to classifying eye blinks with single eyelid distance computation while achieving a better f1 score and accuracy than the Eye Aspect Ratio (EAR) threshold method. Last but not least, the authors implemented the solution natively in the MediaPipe framework and open-sourced it along with the reproducible experimental results on GitHub. The solution provides face orientation, eye blink, facial activity, and translation detections out of the box and is highly customizable and extensible.Keywords: android, desktop, edge computing, blink, face orientation, facial activity and translation, MediaPipe, open source, real-time, video conference, web, iOS, Z score facial landmark standardization
Procedia PDF Downloads 975176 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach
Authors: Madhav Khadilkar
Abstract:
Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction
Procedia PDF Downloads 1575175 Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs
Authors: Seyed Mehdi Hashemi, Gholamreza Raisali, Mehran Taheri
Abstract:
One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT.Keywords: photoneutron, Linac, PMMA shield, equivalent dose
Procedia PDF Downloads 4945174 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder
Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian
Abstract:
Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.Keywords: titanium, metal injection moulding, mechanical properties, scaffolds
Procedia PDF Downloads 2085173 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 905172 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 1185171 Exploration of Community Space Environment Renewal Strategies Based on the Concept of Disaster Chain
Authors: Ma Chaoyang
Abstract:
With the acceleration of urbanization, old communities are facing renewal problems such as an aging material environment, declining living quality, and insufficient resilience. The once glorious old communities have become the most vulnerable areas in the city. Through a re-understanding of the ‘disaster chain’ and resilient communities, it is believed that considering the construction of resilient communities during community renewal is of great significance for promoting the sustainable development of communities. This article proposes renewal strategies for old communities based on the concept of preventing the occurrence of disaster chains. After analyzing the main demand characteristics of old communities, it proposes a reflection on improving community spatial safety resilience based on the ‘broken chain’ concept. In the four stages of ‘pre-disaster, mid-disaster, and post-disaster’, it elaborates that considering the occurrence of disaster chain in community renewal is the main content of research on spatial safety resilience construction and clarifies that community resilience is the idea and principle of responding with the process of disaster chain. The study focuses on the four dimensions of ‘pre-disaster, mid-disaster, and post-disaster’. This can provide ideas and references for resilience construction in community updates.Keywords: community updates, disaster chain concept, community resilience, space environment
Procedia PDF Downloads 525170 A Model of the Universe without Expansion of Space
Authors: Jia-Chao Wang
Abstract:
A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction
Procedia PDF Downloads 1355169 Theory of Constraints: Approach for Performance Enhancement and Boosting Overhaul Activities
Authors: Sunil Dutta
Abstract:
Synchronization is defined as ‘the sequencing and re-sequencing of all relative and absolute activities in time and space and continuous alignment of those actions with purposeful objective in a complex and dynamic atmosphere. In a complex and dynamic production / maintenance setup, no single group can work in isolation for long. In addition, many activities in projects take place simultaneously at the same time. Work of every section / group is interwoven with work of others. The various activities / interactions which take place in production / overhaul workshops are interlinked because of physical requirements (information, material, workforces, equipment, and space) and dependencies. The activity sequencing is determined by physical dependencies of various department / sections / units (e.g., inventory availability must be ensured before stripping and disassembling of equipment), whereas resource dependencies do not. Theory of constraint facilitates identification, analyses and exploitation of the constraint in methodical manner. These constraints (equipment, manpower, policies etc.) prevent the department / sections / units from getting optimum exploitation of available resources. The significance of theory of constraints for achieving synchronization at overhaul workshop is illustrated in this paper.Keywords: synchronization, overhaul, throughput, obsolescence, uncertainty
Procedia PDF Downloads 3535168 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 3845167 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions
Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa
Abstract:
Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.Keywords: cubesat, deorbitation, sail, space, debris
Procedia PDF Downloads 2925166 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver
Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar
Abstract:
Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy
Procedia PDF Downloads 201