Search results for: learning activity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12997

Search results for: learning activity

11677 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 154
11676 In-Silico Evaluation and Antihyperglycemic Potential of Leucas Cephalotes

Authors: Anjali Verma, Mahesh Pal, Veena Pande, Dalip Kumar Upreti

Abstract:

The present study is carried out to explore the anti-hyperglycemic activity of Leucas cephalotes plant parts. A fruit, leaves, stems, and roots part of the Leucas cephalotes has been extracted in ethanol and have been evaluated for anti-hyperglycemic activity. The present study indicated that, ethanolic extract of fruit and leaves have shown significant α- amylase inhibitory activity with IC50 value of 92.86 ± 0.89 μg/mL and 98.09 ± 0.69 μg/mL respectively. Two known compounds β-sitosterol and lupeol were isolated from ethanolic extract of L. cephalotes leaves and were subjected to anti-hyperglycemic activity. Lupeol shows the best activity with IC50 55.73 ± 0.47 μg/mL and the results were verified by docking study of these compounds with mammalian α-amylase was carried out on its active site. It was concluded from the study that β-sitosterol and lupeol form one H-bond interactions with the active site residues either Asp212 or Thr21. The estimated free energy binding of β-sitosterol was found to be -9.47 kcal mol-1 with an estimated inhibition constant (Ki) of 558.94 nmol whereas the estimated free energy binding of lupeol was -11.73 kcal mol-1 with an estimated inhibition constant (Ki) of 476.71pmmol. The present study clearly showed that lupeol is more potent in comparison to β-sitosterol. The study indicates that L. cephalotes have significant potential to inhibit α-amylase enzyme.

Keywords: alpha-amylase, beta-sitosterol, hyperglycemia, lupeol

Procedia PDF Downloads 211
11675 The Effects of Self-Graphing on the Reading Fluency of an Elementary Student with Learning Disabilities

Authors: Matthias Grünke

Abstract:

In this single-case study, we evaluated the effects of a self-graphing intervention to help students improve their reading fluency. Our participant was a 10-year-old girl with a suspected learning disability in reading. We applied an ABAB reversal design to test the efficacy of our approach. The dependent measure was the number of correctly read words from a children’s book within five minutes. Our participant recorded her daily performance using a simple line diagram. Results indicate that her reading rate improved simultaneously with the intervention and dropped as soon as the treatment was suspended. The findings give reasons for optimism that our simple strategy can be a very effective tool in supporting students with learning disabilities to boost their reading fluency.

Keywords: single-case study, learning disabilities, elementary education, reading problems, reading fluency

Procedia PDF Downloads 109
11674 Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g., online entrepreneurship education courses and programs) and other digital tools (e.g., digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia PDF Downloads 257
11673 Assessement of Phytochemicals and Antioxidant Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Mohamed Toumi, Aicha Kesouri, Hafidha Metidji, Chelghoum Chabane

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The present study was designed to investigate the phytochemical screening, total phenolic and antioxidant activity of Lavandula antineae Maire for the first time. Phytochemical screening revealed the presence of different kind of chemical groups (anthraquinones, terpenes, saponins, flavonoids, tannins, O-heterosides, C-heterosides, phenolic acids). The amounts of total phenolics in the extracts (hydromethanolic and ethyl acetate extract) were determined spectrometrically. From the analyses, ethyl acetate extract had the highest total phenolic content (262.35 mg GA/g extract) and antioxidant activity (IC50=7.10 µg/ml) using DPPH method. The ethyl acetate extract was also more potent on reducing power compared to hydromethanolic extract. The results suggested that L. antineae could be considered as a new potential source of natural antioxidant for pharmaceuticals and food preservation.

Keywords: Lavandula antineae, antioxidant activity, phytochemical screening, total phenolics

Procedia PDF Downloads 519
11672 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: e-learning, platform, authoring tool, science teaching, educational sciences

Procedia PDF Downloads 395
11671 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 421
11670 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City

Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jose L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jose F. Vicent

Abstract:

This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.

Keywords: social networks, spatial analysis, data visualization, geocomputation, Foursquare

Procedia PDF Downloads 425
11669 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills

Procedia PDF Downloads 205
11668 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 265
11667 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 94
11666 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 389
11665 Effectiveness of Active Learning in Social Science Courses at Japanese Universities

Authors: Kumiko Inagaki

Abstract:

In recent, years, Japanese universities have begun to face a dilemma: more than half of all high school graduates go on to attend an institution of higher learning, overwhelming Japanese universities accustomed to small student bodies. These universities have been forced to embrace qualitative changes to accommodate the increased number and diversity of students who enter their establishments, students who differ in their motivations for learning, their levels of eagerness to learn, and their perspectives on the future. One of these changes is an increase in awareness among Japanese educators of the importance of active learning, which deepens students’ understanding of course material through a range of activities, including writing, speaking, thinking, and presenting, in addition to conventional “passive learning” methods such as listening to a one-way lecture.  The purpose of this study is to examine the effectiveness of the teaching method adapted to improve active learning. A teaching method designed to promote active learning was implemented in a social science course at one of the most popular universities in Japan. A questionnaire using a five-point response format was given to students in 2,305 courses throughout the university to evaluate the effectiveness of the method based on the following measures: ① the ratio of students who were motivated to attend the classes, ② the rate at which students learned new information, and ③ the teaching method adopted in the classes. The results of this study show that the percentage of students who attended the active learning course eagerly, and the rate of new knowledge acquired through the course, both exceeded the average for the university, the department, and the subject area of social science. In addition, there are strong correlations between teaching method and student motivation and between teaching method and knowledge acquisition rate. These results indicate that the active learning teaching method was effectively implemented and that it may improve student eagerness to attend class and motivation to learn.

Keywords: active learning, Japanese university, teaching method, university education

Procedia PDF Downloads 194
11664 Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil from the Leaves of Thymus vulgaris L.

Authors: Tsige Reda

Abstract:

Essential oil of Thymus vulgaris was extracted by means of hydro-distillation. This study was done to investigate the chemical composition, antibacterial and antioxidant activities. The chemical composition of the essential oils was determined using gas chromatography coupled to mass spectroscopy (GC-MS). Using disc diffusion assay the antibacterial activity was assessed on one Gram-positive bacteria and one Gram-negative bacteria. The percentage oil yield of the essential oil was found to be 0.97 ± 0.08% (w/w) with yellow color. The physicochemical constants of the oil were also noted. The phytochemical screening of the plant extract revealed the presence of tannins, saponins, phenol, flavonoids, terpenoids, steroids and alkaloids. A total of 18 chemical constituents were identified by Gas Chromatography-Mass Spectroscopy analysis representing 100% of the total essential oil of Thymus vulgaris, with thymol (31.977%), o-cymene (29.992%), and carvacrol (14.541%). Previous studies have revealed that the thymol, o-cymen and carvacrol components of Thymus vulgaris are responsible for their biological activities. Thymus vulgaris have been used traditionally to treat a wide variety of infections. Based on the extensive use and lack of scientific evidence, a study was embarked upon to determine its bioactivity. The essential oil of Thymus vulgaris leaves exhibited higher activity towards the Gram-positive bacteria (Staphylococcus aurous) than the Gram-negative bacteria (Escherichia coli) and also has good antioxidant activity, and can be used medicinal and therapeutic applications. This activity may be due to the high amount of thymol, o-cymen and carvacrol.

Keywords: hydro-distillation, Thymus vulgaris, essential oil composition, phytochemical screening, physicochemical constants, antioxidant activity, antibacterial activity

Procedia PDF Downloads 437
11663 Prevalence and Fungicidal Activity of Endophytic Micromycetes of Plants in Kazakhstan

Authors: Lyudmila V. Ignatova, Yelena V. Brazhnikova, Togzhan D. Mukasheva, Ramza Zh. Berzhanova, Anel A. Omirbekova

Abstract:

Endophytic microorganisms are presented in plants of different families growing in the foothills and piedmont plains of Trans-Ili Alatau. It was found that the maximum number of endophytic micromycetes is typical to the Fabaceae family. The number of microscopic fungi in the roots reached (145.9±5.9)×103 CFU/g of plant tissue; yeasts - (79.8±3.5)×102 CFU/g of plant tissue. Basically, endophytic microscopic fungi are typical for underground parts of plants. In contrast, yeasts more infected aboveground parts of plants. Small amount of micromycetes is typical to inflorescence and fruits. Antagonistic activity of selected micromycetes against Fusarium graminearum, Cladosporium sp., Phytophtora infestans and Botrytis cinerea phytopathogens was detected. Strains with a broad, narrow and limited range of action were identified. For further investigations Rh2 and T7 strains were selected, they are characterized by a broad spectrum of fungicidal activity and they formed the large inhibition zones against phytopathogens. Active antagonists are attributed to the Rhodotorula mucilaginosa and Beauveria bassiana species.

Keywords: endophytic micromycetes, fungicidal activity, prevalence, plants

Procedia PDF Downloads 318
11662 Mentor and Mentee Based Learning

Authors: Erhan Eroğlu

Abstract:

This paper presents a new method called Mentor and Mentee Based Learning. This new method is becoming more and more common especially at workplaces. This study is significant as it clearly underlines how it works well. Education has always aimed at equipping people with the necessary knowledge and information. For many decades it went on teachers’ talk and chalk methods. In the second half of the nineteenth century educators felt the need for some changes in delivery systems. Some new terms like self- discovery, learner engagement, student centered learning, hands on learning have become more and more popular for such a long time. However, some educators believe that there is much room for better learning methods in many fields as they think the learners still cannot fulfill their potential capacities. Thus, new systems and methods are still being developed and applied at education centers and work places. One of the latest methods is assigning some mentors for the newly recruited employees and training them within a mentor and mentee program which allows both parties to see their strengths and weaknesses and the areas which can be improved. This paper aims at finding out the perceptions of the mentors and mentees on the programs they are offered at their workplaces and suggests some betterment alternatives. The study has been conducted via a qualitative method whereby some interviews have been done with both mentors and mentees separately and together. Results show that it is a great way to train inexperienced one and also to refresh the older ones. Some points to be improved have also been underlined. The paper shows that education is not a one way path to follow.

Keywords: learning, mentor, mentee, training

Procedia PDF Downloads 227
11661 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 220
11660 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 257
11659 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies

Procedia PDF Downloads 352
11658 Effect of Endurance Exercise Training on Blood Pressure in Elderly Female Patients with Hypertension

Authors: Elham Ahmadi

Abstract:

This study is conducted with the aim of investigating the effect of moderate physical activity (60% of maximal heart rate-MHR) on blood pressure in an elderly female with hypertension. Hypertension is considered a modifiable risk factor for cardiovascular disease through physical activity. The purpose and significance of this study were to investigate the role of exercise as an alternative therapy since some patients exhibit sensitivity/intolerance to some drugs. Initially, 65 hypertensive females (average age = 49.7 years) (systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) and 25 hypertensive females as a control group (average age = 50.3 years and systolic blood pressure, SBP >140 mmHg and/or diastolic blood pressure, DBP>85 mmHg) were selected. The subjects were divided based on their age, duration of disease, physical activity, and drug consumption. Then, blood pressure and heart rate (HR) were measured in all of the patients using a sphygmomanometer (pre-test). The exercise sessions consisted of warm-up, aerobic activity, and cooling down (total duration of 20 minutes for the first session up to 55 minutes in the last session). At the end of the 12th session (mid-test) and final session (24th session), blood pressure was measured for the last time (post-test). The control group was without any exercise during the study. The results were analyzed using a t-test. Our results indicated that moderate physical activity was effective in lowering blood pressure by 6.4/5.6–mm Hg for SBP and 2.4/4.3mm Hg for DBP in hypertensive patients, irrespective of age, duration of disease, and drug consumption ( P<.005). The control group indicates no changes in BP. Physical activity programs with moderate intensity (approximately at 60% MHR), three days per week, can be used not only as a preventive measure for diastolic hypertension (DBP>90 mmHg high blood pressure) but also as an alternative to drug therapy in the treatment of hypertension, as well.

Keywords: endurance exercise, elderly female, hypertension, physical activity

Procedia PDF Downloads 96
11657 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 91
11656 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 124
11655 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 298
11654 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning

Authors: Jaeseo Lim, Jooyong Park

Abstract:

Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.

Keywords: discussions, education, learning, lecture, test

Procedia PDF Downloads 174
11653 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 83
11652 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 197
11651 Analysis of the Interest of High School Students in Tirana for Physical Activity, Sports and Foreign Languages

Authors: Zylfi Shehu, Shpetim Madani, Bashkim Delia

Abstract:

Context: The study focuses on the interest and engagement of high school students in Tirana, Albania, in physical activity, sports, and foreign languages. It acknowledges the numerous physiological benefits of physical activity, such as cardiovascular health and improved mood. It also recognizes the importance of physical activity in childhood and adolescence for proper skeletal development and long-term health. Research Aim: The main purpose of the study is to investigate and analyze the preferences and interests of male and female high school students in Tirana regarding their functional development, physical activity, sports participation, and choice of foreign languages. The aim is to provide insights for the students and teachers to guide future objectives and improve the quality of physical education. Methodology: The study employed a survey-based approach, targeting both male and female students in public high schools in Tirana. A total of 410 students aged 15 to 19 years old, participated in the study. The data collected from the survey were processed using Excel and presented through tables and graphs. Findings: The results revealed that team sports were more favored by the students, with football being the preferred choice among males, while basketball and volleyball were more popular among females. Additionally, English was found to be the most preferred foreign language, selected by a higher percentage of females (38.57%) compared to males (16.90%). German followed as the second preferred language. Theoretical Importance: This study contributes to the understanding of students' interests in physical activity, sports, and foreign languages in Tirana's high schools. The findings highlight the need to focus on specific sports and languages to cater to students' preferences and guide future educational objectives. It also emphasizes the importance of physical education in promoting students' overall well-being and highlights potential areas for policy and program improvement. Data Collection and Analysis Procedures: The study collected data through surveys administered to high school students in Tirana. The survey responses were processed and analyzed using Excel, and the findings were presented through tables and graphs. The data analysis allowed for the identification of preferences and trends among male and female students, providing valuable insights for future decision-making. Question Addressed: The study aimed to address the question of high school students' interest in physical activity, sports, and foreign languages. It sought to understand the preferences and choices made by students in Tirana and investigate factors such as gender, family income, and accessibility to extracurricular sports activities. Conclusion: The study revealed that high school students in Tirana show a preference for team sports, with football being the most favored among males and basketball and volleyball among females. English was found to be the most preferred foreign language. The findings provide important insights for educators and policymakers to enhance physical education programs and consider students' preferences and interests to foster a more effective learning environment. The study also emphasizes the importance of physical activity and sports in promoting students' physical and mental well-being.

Keywords: female, male, foreign languages, sports, physical education, high school students

Procedia PDF Downloads 93
11650 Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections

Authors: Lise P. Labéjof, Krisnayne S. Ribeiro, Nicolle P. dos Santos

Abstract:

An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues.

Keywords: cell phone, digital micrographies, learning of sciences, teaching practices

Procedia PDF Downloads 594
11649 Videoconference Technology: An Attractive Vehicle for Challenging and Changing Tutors Practice in Open and Distance Learning Environment

Authors: Ramorola Mmankoko Ziphorah

Abstract:

Videoconference technology represents a recent experiment of technology integration into teaching and learning in South Africa. Increasingly, videoconference technology is commonly used as a substitute for the traditional face-to-face approaches to teaching and learning in helping tutors to reshape and change their teaching practices. Interestingly, though, some studies point out that videoconference technology is commonly used for knowledge dissemination by tutors and not so much for the actual teaching of course content in Open and Distance Learning context. Though videoconference technology has become one of the dominating technologies available among Open and Distance Learning institutions, it is not clear that it has been used as effectively to bridge the learning distance in time, geography, and economy. While tutors are prepared theoretically, in most tutor preparation programs, on the use of videoconference technology, there are still no practical guidelines on how they should go about integrating this technology into their course teaching. Therefore, there is an urgent need to focus on tutor development, specifically on their capacities and skills to use videoconference technology. The assumption is that if tutors become competent in the use of the videoconference technology for course teaching, then their use in Open and Distance Learning environment will become more commonplace. This is the imperative of the 4th Industrial Revolution (4IR) on education generally. Against the current vacuum in the practice of using videoconference technology for course teaching, the current study proposes a qualitative phenomenological approach to investigate the efficacy of videoconferencing as an approach to student learning. Using interviews and observation data from ten participants in Open and Distance Learning institution, the author discusses how dialogue and structure interacted to provide the participating tutors with a rich set of opportunities to deliver course content. The findings to this study highlight various challenges experienced by tutors when using videoconference technology. The study suggests tutor development programs on their capacity and skills and on how to integrate this technology with various teaching strategies in order to enhance student learning. The author argues that it is not merely the existence of the structure, namely the videoconference technology, that provides the opportunity for effective teaching, but that is the interactions, namely, the dialogue amongst tutors and learners that make videoconference technology an attractive vehicle for challenging and changing tutors practice.

Keywords: open distance learning, transactional distance, tutor, videoconference

Procedia PDF Downloads 127
11648 The Relationships between How and Why Students Learn and Academic Achievement

Authors: S. Chee Choy, Daljeet Singh Sedhu

Abstract:

This study examines the relationships between how and why students learned and academic achievement for 2646 university students from various faculties. The LALQ, a self-report measure of student approaches to learning was administered and academic achievement data were obtained from student CGPA. The results showed significant differences in the approach to learning of male and female students. How and why students learned can influence their achievement and efficacy as well. High and low achievers have different learning behaviours. High female achievers were more likely to learn for a better future and be persistent in it. Meanwhile high male achievers were more likely to seek approval from their peers and be more confident about graduating on time from their university. The implications of individual differences and limitations of the study are discussed.

Keywords: student learning, learner awareness, student achievement, LALQ

Procedia PDF Downloads 344