Search results for: inverse problem in tomography
6628 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 216627 Multitasking Incentives and Employee Performance: Evidence from Call Center Field Experiments and Laboratory Experiments
Authors: Sung Ham, Chanho Song, Jiabin Wu
Abstract:
Employees are commonly incentivized on both quantity and quality performance and much of the extant literature focuses on demonstrating that multitasking incentives lead to tradeoffs. Alternatively, we consider potential solutions to the tradeoff problem from both a theoretical and an experimental perspective. Across two field experiments from a call center, we find that tradeoffs can be mitigated when incentives are jointly enhanced across tasks, where previous research has suggested that incentives be reduced instead of enhanced. In addition, we also propose and test, in a laboratory setting, the implications of revising the metric used to assess quality. Our results indicate that metrics can be adjusted to align quality and quantity more efficiently. Thus, this alignment has the potential to thwart the classic tradeoff problem. Finally, we validate our findings with an economic experiment that verifies that effort is largely consistent with our theoretical predictions.Keywords: incentives, multitasking, field experiment, experimental economics
Procedia PDF Downloads 1596626 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory
Procedia PDF Downloads 1316625 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 616624 Direct Blind Separation Methods for Convolutive Images Mixtures
Authors: Ahmed Hammed, Wady Naanaa
Abstract:
In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping
Procedia PDF Downloads 3266623 Mixed Number Algebra and Its Application
Authors: Md. Shah Alam
Abstract:
Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation.Keywords: mixed number, special relativity, quantum mechanics, electrodynamics, pauli matrix
Procedia PDF Downloads 3696622 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad
Authors: Ashwini Umale
Abstract:
Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software
Procedia PDF Downloads 5076621 Optimizing Human Diet Problem Using Linear Programming Approach: A Case Study
Authors: P. Priyanka, S. Shruthi, N. Guruprasad
Abstract:
Health is a common theme in most cultures. In fact all communities have their concepts of health, as part of their culture. Health continues to be a neglected entity. Planning of Human diet should be done very careful by selecting the food items or groups of food items also the composition involved. Low price and good taste of foods are regarded as two major factors for optimal human nutrition. Linear programming techniques have been extensively used for human diet formulation for quiet good number of years. Through the process, we mainly apply “The Simplex Method” which is a very useful statistical tool based on the theorem of Elementary Row Operation from Linear Algebra and also incorporate some other necessary rules set by the Simplex Method to help solve the problem. The study done by us is an attempt to develop a programming model for optimal planning and best use of nutrient ingredients.Keywords: diet formulation, linear programming, nutrient ingredients, optimization, simplex method
Procedia PDF Downloads 5646620 An Improved Ant Colony Algorithm for Genome Rearrangements
Authors: Essam Al Daoud
Abstract:
Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.Keywords: ant colony algorithm, edit distance, genome breakpoint, genome rearrangement, reversal sort
Procedia PDF Downloads 3476619 Selecting Skyline Mash-Ups under Uncertainty
Authors: Aymen Gammoudi, Hamza Labbaci, Nizar Messai, Yacine Sam
Abstract:
Web Service Composition (Mash-up) has been considered as a new approach used to offer the user a set of Web Services responding to his request. These approaches can return a set of similar Mash-ups in a given context that makes users unable to select the perfect one. Recent approaches focus on computing the skyline over a set of Quality of Service (QoS) attributes. However, these approaches are not sufficient in a dynamic web service environment where the delivered QoS by a Web service is inherently uncertain. In this paper, we treat the problem of computing the skyline over a set of similar Mash-ups under certain dimension values. We generate dimensions for each Mash-up using aggregation operations applied to the QoS attributes. We then tackle the problem of computing the skyline under uncertain dimensions. We present each dimension value of mash-up using a frame of discernment and introduce the d-dominance using the Evidence Theory. Finally, we propose our experimental results that show both the effectiveness of the introduced skyline extensions and the efficiency of the proposed approaches.Keywords: web services, uncertain QoS, mash-ups, uncertain dimensions, skyline, evidence theory, d-dominance
Procedia PDF Downloads 2366618 Convertible Lease, Risky Debt and Financial Structure with Growth Option
Authors: Ons Triki, Fathi Abid
Abstract:
The basic objective of this paper is twofold. It resides in designing a model for a contingent convertible lease contract that can ensure the financial stability of a company and recover the losses of the parties to the lease in the event of default. It also aims to compare the convertible lease contract on inefficiencies resulting from the debt-overhang problem and asset substitution with other financing policies. From this perspective, this paper highlights the interaction between investments and financing policies in a dynamic model with existing assets and a growth option where the investment cost is financed by a contingent convertible lease and equity. We explore the impact of the contingent convertible lease on the capital structure. We also check the reliability and effectiveness of the use of the convertible lease contract as a means of financing. Findings show that the rental convertible contract with a sufficiently high conversion ratio has less severe inefficiencies arising from risk-shifting and debt overhang than those entailed by risky debt and pure-equity financing. The problem of underinvestment pointed out by Mauer and Ott (2000) and the problem of overinvestment mentioned by Hackbarth and Mauer (2012) may be reduced under contingent convertible lease financing. Our findings predict that the firm value under contingent convertible lease financing increases globally with asset volatility instead of decreasing with business risk. The study reveals that convertible leasing contracts can stand for a reliable solution to ensure the lessee and quickly recover the counterparties of the lease upon default.Keywords: contingent convertible lease, growth option, debt overhang, risk-shifting, capital structure
Procedia PDF Downloads 746617 The Coexistence of Quality Practices and Frozen Concept in R and D Projects
Authors: Ayala Kobo-Greenhut, Amos Notea, Izhar Ben-Shlomo
Abstract:
In R&D projects, there is no doubt about the need to change a current concept to an alternative one over time (i.e., concept leaping). Concept leaping is required since with most R&D projects uncertainty is present as they take place in dynamic environments. Despite the importance of concept leaping when needed, R&D teams may fail to do so (i.e., frozen concept). This research suggests a possible reason why frozen concept happens in the framework of quality engineering and control engineering. We suggest that frozen concept occurs since concept determines the derived plan and its implementation may be considered as equivalent to a closed-loop process, and is subject to the problem of not recognizing gaps as failures. We suggest that although implementing quality practices into an R&D project’s routine has many advantages, it intensifies the frozen concept problem since working according to quality practices relates to exploitation of learning behavior, while leaping to a new concept relates to exploring learning behavior.Keywords: closed loop, control engineering, design, leaping, frozen concept, quality engineering, quality practices
Procedia PDF Downloads 4756616 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4766615 Mixed Model Sequencing in Painting Production Line
Authors: Unchalee Inkampa, Tuanjai Somboonwiwat
Abstract:
Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.Keywords: sequencing, mixed model lines, painting process, electrode position paint
Procedia PDF Downloads 4226614 Graph Planning Based Composition for Adaptable Semantic Web Services
Authors: Rihab Ben Lamine, Raoudha Ben Jemaa, Ikram Amous Ben Amor
Abstract:
This paper proposes a graph planning technique for semantic adaptable Web Services composition. First, we use an ontology based context model for extending Web Services descriptions with information about the most suitable context for its use. Then, we transform the composition problem into a semantic context aware graph planning problem to build the optimal service composition based on user's context. The construction of the planning graph is based on semantic context aware Web Service discovery that allows for each step to add most suitable Web Services in terms of semantic compatibility between the services parameters and their context similarity with the user's context. In the backward search step, semantic and contextual similarity scores are used to find best composed Web Services list. Finally, in the ranking step, a score is calculated for each best solution and a set of ranked solutions is returned to the user.Keywords: semantic web service, web service composition, adaptation, context, graph planning
Procedia PDF Downloads 5236613 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach
Authors: Dhawal Ladani
Abstract:
Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube
Procedia PDF Downloads 3106612 Spatial REE Geochemical Modeling at Lake Acıgöl, Denizli, Turkey: Analytical Approaches on Spatial Interpolation and Spatial Correlation
Authors: M. Budakoglu, M. Karaman, A. Abdelnasser, M. Kumral
Abstract:
The spatial interpolation and spatial correlation of the rare earth elements (REE) of lake surface sediments of Lake Acıgöl and its surrounding lithological units is carried out by using GIS techniques like Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR) techniques. IDW technique which makes the spatial interpolation shows that the lithological units like Hayrettin Formation at north of Lake Acigol have high REE contents than lake sediments as well as ∑LREE and ∑HREE contents. However, Eu/Eu* values (based on chondrite-normalized REE pattern) show high value in some lake surface sediments than in lithological units and that refers to negative Eu-anomaly. Also, the spatial interpolation of the V/Cr ratio indicated that Acıgöl lithological units and lake sediments deposited in in oxic and dysoxic conditions. But, the spatial correlation is carried out by GWR technique. This technique shows high spatial correlation coefficient between ∑LREE and ∑HREE which is higher in the lithological units (Hayrettin Formation and Cameli Formation) than in the other lithological units and lake surface sediments. Also, the matching between REEs and Sc and Al refers to REE abundances of Lake Acıgöl sediments weathered from local bedrock around the lake.Keywords: spatial geochemical modeling, IDW, GWR techniques, REE, lake sediments, Lake Acıgöl, Turkey
Procedia PDF Downloads 5576611 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media
Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li
Abstract:
The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium
Procedia PDF Downloads 1386610 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: sustainable supply chain management, sustainable criteria, MCDM tools, AHP analysis, TOPSIS method
Procedia PDF Downloads 3286609 Enhancing Fracture Toughness of CF/PAEK Laminates for High-Velocity Impact Applications: An Experimental Investigation
Authors: Johannes Keil, Eric Mischorr, Veit Würfel, Jan Condé-Wolter, Alexander Liebsch, Maik Gude
Abstract:
In the aviation sector wastewater pipes are subjected to many different mechanical and medial loads. Worst-case scenarios include high-velocity impacts resulting from the introduction of foreign objects into the system. The industry is seeking to reduce the weight of these pipes, which are currently manufactured from titanium. A promising alternative is the use of fiber-reinforced polymers (FRP), specifically carbon fiber (CF) reinforced polyaryletherketone (PAEK) laminates. This study employs an experimental methodology to investigate the impact resistance of CF/PAEK laminates, with a particular focus on three configurations: crimp, non-crimp, and interleaved matrix rich films in cross-ply laminates. High-velocity impacts were performed using a gas gun resulting in three-dimensional damage patterns. Afterwards the damage behavior was qualitatively and quantitatively analyzed using ultrasonic scans and computed tomography (CT). Samples with an interleaved matrix-rich film led to a reduction of the damage area by around 40% compared to the non-interleaved, non-crimp samples, while the crimp architecture resulted in a reduction of more than 60%. Therefore, these findings contribute to understanding the influence of laminate architecture on impact resistance, paving the way for more efficient materials in aviation applications.Keywords: fracture toughness, high-velocity-impact, textile architecture, thermoplastic composites
Procedia PDF Downloads 236608 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: asymptotically quasi-nonexpansive nonself-mapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space
Procedia PDF Downloads 2626607 Preference Aggregation and Mechanism Design in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium
Procedia PDF Downloads 1196606 Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce.Keywords: spam keyword, e-commerce, keyword features, spam filtering
Procedia PDF Downloads 2966605 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3356604 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations
Authors: Gilbert Makanda
Abstract:
The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.Keywords: differential equations, knowledge acquisition, least squares, dynamical systems
Procedia PDF Downloads 4286603 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 306602 The Education Quality Management by the Participation of the Community in Northern Part of Thailand
Authors: Preecha Pongpeng
Abstract:
This research aims to study the education quality management to solve the problem of teachers shortage by the communities participation. This research is action research by using the tools is questionnaire to collect the data whit, students and community representatives and final will interview to ask the opinions of people in the community to help and support instruction in problems in teaching. Results found that people in the community are aware and working together to solve the lack the of teachers by collaboration between school personnel and community members by finding people who are knowledgeable, organized into local wisdom in the community, compound money to donate and hire someone in the community to teaching between classroom with people in the community. In addition, researcher discovered this research project contributes to cooperation between the school and community and there was a problem including administrative expenses and the school's academic quality management.Keywords: education quality management, local wisdom, northern part of Thailand, participation of the community
Procedia PDF Downloads 2976601 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations
Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana
Abstract:
Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS
Procedia PDF Downloads 2656600 Challenge Response-Based Authentication for a Mobile Voting System
Authors: Tohari Ahmad, Hudan Studiawan, Iwang Aryadinata, Royyana M. Ijtihadie, Waskitho Wibisono
Abstract:
A manual voting system has been implemented worldwide. It has some weaknesses which may decrease the legitimacy of the voting result. An electronic voting system is introduced to minimize this weakness. It has been able to provide a better result, in terms of the total time taken in the voting process and accuracy. Nevertheless, people may be reluctant to go to the polling location because of some reasons, such as distance and time. In order to solve this problem, mobile voting is implemented by utilizing mobile devices. There are many mobile voting architectures available. Overall, authenticity of the users is the common problem of all voting systems. There must be a mechanism which can verify the users’ authenticity such that only verified users can give their vote once; others cannot vote. In this paper, a challenge response-based authentication is proposed by utilizing properties of the users, for example, something they have and know. In terms of speed, the proposed system provides good result, in addition to other capabilities offered by the system.Keywords: authentication, data protection, mobile voting, security
Procedia PDF Downloads 4216599 Integrating Explicit Instruction and Problem-Solving Approaches for Efficient Learning
Authors: Slava Kalyuga
Abstract:
There are two opposing major points of view on the optimal degree of initial instructional guidance that is usually discussed in the literature by the advocates of the corresponding learning approaches. Using unguided or minimally guided problem-solving tasks prior to explicit instruction has been suggested by productive failure and several other instructional theories, whereas an alternative approach - using fully guided worked examples followed by problem solving - has been demonstrated as the most effective strategy within the framework of cognitive load theory. An integrated approach discussed in this paper could combine the above frameworks within a broader theoretical perspective which would allow bringing together their best features and advantages in the design of learning tasks for STEM education. This paper represents a systematic review of the available empirical studies comparing the above alternative sequences of instructional methods to explore effects of several possible moderating factors. The paper concludes that different approaches and instructional sequences should coexist within complex learning environments. Selecting optimal sequences depends on such factors as specific goals of learner activities, types of knowledge to learn, levels of element interactivity (task complexity), and levels of learner prior knowledge. This paper offers an outline of a theoretical framework for the design of complex learning tasks in STEM education that would integrate explicit instruction and inquiry (exploratory, discovery) learning approaches in ways that depend on a set of defined specific factors.Keywords: cognitive load, explicit instruction, exploratory learning, worked examples
Procedia PDF Downloads 127