Search results for: crowd detecting and tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1725

Search results for: crowd detecting and tracking

405 Solar Collectors for Northern Countries

Authors: Ilze Pelece, Imants Ziemelis, Henriks Putans

Abstract:

Traditionally the solar energy has been used in southern countries, but it has been used also in northern ones. Most popular kind of use of solar energy in Latvia is solar collector for water heating. Traditionally flat-plate solar collectors are used because of simplicity of manufacturing. However, some peculiarities in use of solar energy in northern countries must be taken into account. In northern countries, there is lower irradiance, but longer day and longer path of the sun during summer. Therefore traditional flat-plate solar collectors are not appropriate enough in northern countries, but new forms must be developed. There are two forms of solar collectors - cylindrical and semi-spherical – proposed in this work. Such collectors can be made both for water or air heating. Theoretical calculations and measurements of energy gain from those two collectors have been done. Results show that daily energy sum received by the semi-spherical collector from the sun at the middle of summer is 1.43 times more than that of the flat one, but for the cylindrical collector, it is 1.74 times more than that of the flat one or equal to that of the tracking to sun flat-plate collector. The resulting difference in energy gain from collector will be not so large because of the difference in heat loses. Heat can be decreased by switching off the water circulation pump when the sun is covered by clouds. For this purpose solar batteries, powered pump can be used instead of complicated and expensive automatics. Even more important than overall energy gain is the fact that semi-spherical and cylindrical collectors work all day (17 hours in the middle of summer at 57 northern latitudes), while flat-plate collector only about 11 hours. Yearly energy sum received by the collector from the sun is 1.5 and 1.9 times larger for the semi-spherical and cylindrical collector respectively as for the flat one. The cylindrical solar collector is easier to manufacture, but semi-spherical one is more aesthetical and durable against the impact of the wind. Although solar collectors for water and air heating are studied in this article, main ideas are applicable also for solar batteries.

Keywords: cylindric, semi-spherical, solar collector, solar energy, water heating

Procedia PDF Downloads 261
404 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
403 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico

Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez

Abstract:

Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.

Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation

Procedia PDF Downloads 67
402 Non-Native and Invasive Fish Species in Poland

Authors: Tomasz Raczyński

Abstract:

Non-native and invasive species negatively transform ecosystems. Non-native fish species can displace native fish species through competition, predation, disrupting spawning, transforming ecosystems, or transmitting parasites. This influence is more and more noticeable in Poland and in the world. From December 2014 to October 2020, did catch of fishes by electrofishing method carried on 416 sites in various parts of Poland. Research was conducted in both running and stagnant freshwaters with the predominance of running waters. Only sites where the presence of fish was found were analysed. The research covered a wide spectrum of waters from small mountain streams, through drainage ditches to the largest Polish river - the Vistula. Single sites covered oxbow lakes, small ponds and lakes. Electrofishing was associated with ichthyofauna inventories and was mainly aimed at detecting protected species of fish and lampreys or included in the annexes to the EU Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora). The results of these catches were analysed for alien and invasive fish species. The analysis of the catch structure shows that in 71 out of 416 research sites was found alien and invasive fish species, belonging to 9 taxa. According to the above, alien species of fish are present in 17% of the study sites. The most frequently observed species was the Prussian carp Carassius gibelio, which was recorded on 43 sites. Stone moroko Pseudorasbora parva was found on 24 sites. Chinese sleeper Perccottus glenii was found on 6 sites, and Bullhead Ameiurus sp. was also found on 6 sites. Western tubenose goby Proterorhinus semilunaris was found at 5 sites and Rainbow trout Oncorhynchus mykiss at 3 sites. Monkey goby Neogobius fluviatilis, Round goby Neogobius melanostomus and Eurasian carp Cyprinus carpio was recorded on 2 sites.

Keywords: non-native species, invasive species, fish species, invasive fish species, native fish species

Procedia PDF Downloads 109
401 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 431
400 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 185
399 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 4
398 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 334
397 Associations of the FTO Gene Polymorphism with Obesity and Metabolic Syndrome in Lithuanian Adult Population

Authors: Alina Smalinskiene Janina Petkeviciene, Jurate Klumbiene, Vilma Kriaucioniene, Vaiva Lesauskaite

Abstract:

The worldwide prevalence of obesity has been increasing dramatically in the last few decades, and Lithuania is no exception. In 2012, every fifth adult (19% of men and 20.5 % of women) was obese and every third was overweight Association studies have highlighted the influence of SNPs in obesity, with particular focus on FTO rs9939609. Thus far, no data on the possible association of this SNP to obesity in the adult Lithuanian population has been reported. Here, for the first time, we demonstrate an association between the FTO rs9939609 homozygous AA genotype and increased BMI when compared to homozygous TT. Furthermore, a positive association was determined between the FTO rs9939609 variant and risk of metabolic syndrome. Background: This study aimed to examine the associations between the fat mass and obesity associated (FTO) gene rs9939609 variant with obesity and metabolic syndrome in Lithuanian adult population. Materials and Methods: A cross-sectional health survey was carried out in randomly selected municipalities of Lithuania. The random sample was obtained from lists of 25–64 year-old inhabitants. The data from 1020 subjects were analysed. The rs9939609 SNP of the FTO gene was assessed using TaqMan assays (Applied Biosystems, Foster City, CA, USA). The Applied Biosystems 7900HT Real-Time Polymerase Chain Reaction System was used for detecting the SNPs. Results: The carriers of the AA genotype had the highest mean values of BMI and waist circumference (WC) and the highest risk of obesity. Interactions ‘genotype x age’ and ‘genotype x physical activity’ in determining BMI and WC were shown. Neither lipid and glucose levels, nor blood pressure were associated with the rs9939609 independently of BMI. In the age group of 25-44 years, association between the FTO genotypes and metabolic syndrome was found. Conclusion: The FTO rs9939609 variant was significantly associated with BMI and WC, and with the risk of obesity in Lithuanian population. The FTO polymorphism might have a greater influence on weight status in younger individuals and in subjects with a low level of physical activity.

Keywords: obesity metabolic syndrome, FTO gene, polymorphism, Lithuania

Procedia PDF Downloads 429
396 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence

Procedia PDF Downloads 327
395 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 66
394 Nanopharmaceutical: A Comprehensive Appearance of Drug Delivery System

Authors: Mahsa Fathollahzadeh

Abstract:

The various nanoparticles employed in drug delivery applications include micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, functionalized nanoparticles, nanocrystals, cyclodextrins, dendrimers, and nanotubes. Micelles, composed of amphiphilic block copolymers, can encapsulate hydrophobic molecules, allowing for targeted delivery. Liposomes, vesicular structures made up of phospholipids, can encapsulate both hydrophobic and hydrophilic molecules, providing a flexible platform for delivering therapeutic agents. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are designed to improve the stability and bioavailability of lipophilic drugs. Polymeric nanoparticles, such as poly(lactic-co-glycolic acid) (PLGA), are biodegradable and can be engineered to release drugs in a controlled manner. Functionalized nanoparticles, coated with targeting ligands or antibodies, can specifically target diseased cells or tissues. Nanocrystals, engineered to have specific surface properties, can enhance the solubility and bioavailability of poorly soluble drugs. Cyclodextrins, doughnut-shaped molecules with hydrophobic cavities, can be complex with hydrophobic molecules, allowing for improved solubility and bioavailability. Dendrimers, branched polymers with a central core, can be designed to deliver multiple therapeutic agents simultaneously. Nanotubes and metallic nanoparticles, such as gold nanoparticles, offer real-time tracking capabilities and can be used to detect biomolecular interactions. The use of these nanoparticles has revolutionized the field of drug delivery, enabling targeted and controlled release of therapeutic agents, reduced toxicity, and improved patient outcomes.

Keywords: nanotechnology, nanopharmaceuticals, drug-delivery, proteins, ligands, nanoparticles, chemistry

Procedia PDF Downloads 51
393 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 70
392 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 63
391 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments

Authors: E. Rama Devi Jothilingam

Abstract:

Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.

Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB

Procedia PDF Downloads 289
390 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 279
389 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee

Abstract:

In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.

Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography

Procedia PDF Downloads 396
388 Staying Cool in the Heat: How Tropical Finches Behaviorally Adjust to Extreme Heat in the Wild

Authors: Mara F. Müller, Simon C. Griffith, Tara L. Crewe, Mirjam Kaestli, Sydney J. Collett, Ian J. Radford, Hamish A. Campbell

Abstract:

The intensity and frequency of heat waves have been progressively increasing because of climate change. Passerines that inhabit very hot regions are already close to their physiological thermal limit and are thus considered highly susceptible to increased ambient temperatures. However, the extent by which passerines behaviorally compensate for extreme heat in their natural habitat has rarely been assessed due to monitoring challenges. To address this knowledge gap, coded VHF-nano transmitters were attached to a tropical passerine (Gouldian finch, Chloebia gouldiae). Fine-scale activity and movement were monitored throughout the hottest and driest period of the year using an array of static VHF-receivers. The finches were found to typically show a peak activity for a few hours at sunrise and remained relatively quiescent for the rest of the day. However, on extremely hot days (max temperature >38ºC), finches showed higher activity levels earlier in the morning and presented a second peak in the afternoon. Gouldian finches are physiologically challenged when ambient temperatures exceed 38ºC, suggesting the shift in movement activity reflects a behavioral mitigation strategy to extreme heat. These tropical finches already exist on an energetic knife-edge during this time of the year due to resource scarcity. Hence, the increased energetic expenditure to mitigate thermal stress may be detrimental. The study demonstrates the value of VHF-telemetry technology in monitoring the impact of global change on the biology of small-bodied mobile species.

Keywords: animal tracking, biotelemetry, climate change, extreme heat, movement activity, radiotelemetry, VHF-telemetry

Procedia PDF Downloads 87
387 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 197
386 Characterization, Antibacterial and Cytotoxicity Evaluation of Silver Nanoparticles Synthesised Using Grewia lasiocarpa E. Mey. Ex Harv. Plant Extracts

Authors: Nneka Augustina Akwu, Yougasphree Naidoo

Abstract:

Molecular advancement in technology has created a means whereby the atoms and molecules (solid forms) of certain materials such as plants, can now be reduced to a range of 1-100 nanometres. Green synthesis of silver nanoparticles (AgNPs) was carried out at room temperature (RT) 25 ± 2°C and 80°C, using the metabolites in the aqueous extracts of the leaves and stem bark of Grewia lasiocarpa as reductants and stabilizing agents. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry, attenuated total reflectance - Fourier transforms infrared (ATR-FTIR) spectroscopy, nanoparticle tracking analysis (NTA), Energy Dispersive X-ray fluorescence scanning electron microscope (SEM-EDXRF) and high-resolution transmission electron microscopy (HRTEM). The AgNPs were biologically evaluated for antioxidant, antibacterial and cytotoxicity activities. The phytochemical and FTIR analyses revealed the presence of metabolites that act as reducing and capping agents, while the UV-Vis spectroscopy of the biosynthesized NPs showed absorption between 380-460 nm, confirming AgNP synthesis. The Zeta potential values were between -9.1 and -20.6 mV with a hydrodynamics diameter ranging from 38.3 to 46.7 nm. SEM and HRTEM analyses revealed that AgNPs were predominately spherical with an average particle size of 2- 31 nm for the leaves and 5-27 nm for the stem bark. The cytotoxicity IC50 values of the AgNPs against HeLa, Caco-2 and MCF-7 were >1 mg/mL. The AgNPs were sensitive to all strains of bacteria used, with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) being more sensitive to the AgNPs. Our findings propose that antibacterial and anticancer agents could be derived from these AgNPs of G. lasiocarpa, and warrant their further investigation.

Keywords: antioxidant, cytotoxicity, Grewia lasiocarpa, silver nanoparticles, Zeta potentials

Procedia PDF Downloads 140
385 Right Ventricular Dynamics During Breast Cancer Chemotherapy in Low Cardiovascular Risk Patients

Authors: Nana Gorgiladze, Tamar Gaprindashvili, Mikheil Shavdia, Zurab Pagava

Abstract:

Introduction/Purpose Chemotherapy is a common treatment for breast cancer, but it can also cause damage to the heart and blood vessels. This damage, known as cancer therapy-related cardiovascular toxicity (CTR-CVT), can increase the risk of heart failure and death in breast cancer patients. The left ventricle is often affected by CTR-CVT, but the right ventricle (RV) may also be vulnerable to CTR-CVT and may show signs of dysfunction before the left ventricle. The study aims to investigate how the RV function changes during chemotherapy for breast cancer by using conventional echocardiographic and global longitudinal strain (GLS) techniques. By measuring the GLS strain of the RV, researchers tend to detect early signs of CTR-CVT and improve the management of breast cancer patients. Methods The study was conducted on 28 women with low cardiovascular risk who received anthracycline chemotherapy for breast cancer. Conventional 2D echocardiography (LVEF, RVS’, TAPSE) and speckle-tracking echocardiography (STE) measurements of the left and right ventricles (LVGLS, RVGLS) were used to assess cardiac function before and after chemotherapy. All patients had normal LVEF at the beginning of the study. Cardiotoxicity was defined as a new LVEF reduction of 10 percentage points to an LVEF of 40-49% and/or a new decline in GLS of 15% from baseline, as proposed by the most recent cardio-oncology guideline. ResultsThe research found that the LVGLS decreased from -21.2%2.1% to -18.6%2.6% (t-test = -4.116; df = 54, p=0.001). The change in value LV-GLS was 2.6%3.0%. The mean percentage change of the LVGLS was 11,6%13,3%; p=0.001. Similarly, the right ventricular global longitudinal strain (RVGLS) decreased from -25.2%2.9% to -21.4%4.4% (t-test = -3.82; df = 54, p=0.001). The RV-GLS value of change was 3.8%3.6%. Likewise, the percentage decrease of the RVGLS was 15,0%14,3%, p=0.001.However, the measurements of the right ventricular systolic function (RVS) and tricuspid annular plane systolic excursion (TAPSE) were insignificant, and the left ventricular ejection fraction ( LVEF) remained unchanged.

Keywords: cardiotoxicity, chemotherapy, GLS, right ventricle

Procedia PDF Downloads 70
384 Track and Evaluate Cortical Responses Evoked by Electrical Stimulation

Authors: Kyosuke Kamada, Christoph Kapeller, Michael Jordan, Mostafa Mohammadpour, Christy Li, Christoph Guger

Abstract:

Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions.

Keywords: CCEP, SOZ, Corpus callosotomy, DTI

Procedia PDF Downloads 64
383 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 227
382 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic

Authors: Novee Lor C. Leyso, Maylin C. Palatino

Abstract:

Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.

Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition

Procedia PDF Downloads 140
381 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
380 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 107
379 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 394
378 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 119
377 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain

Procedia PDF Downloads 258
376 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 338