Search results for: computer assisted classification
3759 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1013758 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 2483757 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 653756 Inquiry-based Science Education in Computer Science Learning in Primary School
Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin
Abstract:
Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.Keywords: inquiry-based science education, student-centered learning, computer science, primary school
Procedia PDF Downloads 1573755 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1213754 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams
Authors: Rochelle Elva
Abstract:
Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of learning and mastery of skills. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation, and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy Value Theory and Motivation Theory to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected possible path to success that continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were, on average, one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.Keywords: expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science
Procedia PDF Downloads 813753 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Authors: Haiyang Su, Kun Qian
Abstract:
We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins
Procedia PDF Downloads 2113752 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 1233751 Facilitating Waste Management to Achieve Sustainable Residential Built Environments
Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy
Abstract:
The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.Keywords: recycling, residential buildings, sustainability, waste
Procedia PDF Downloads 3273750 Investigating Software Engineering Challenges in Game Development
Authors: Fawad Zaidi
Abstract:
This paper discusses a variety of challenges and solutions involved with creating computer games and the issues faced by the software engineers working in this field. This review further investigates the articles coverage of project scope and the problem of feature creep that appears to be inherent with game development. The paper tries to answer the following question: Is this a problem caused by a shortage, or bad software engineering practices, or is this outside the control of the software engineering component of the game production process?Keywords: software engineering, computer games, software applications, development
Procedia PDF Downloads 4753749 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM
Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method
Procedia PDF Downloads 4043748 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić
Abstract:
Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.Keywords: cerebral palsy, Czech republic, social participation, the school function assessment
Procedia PDF Downloads 3613747 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 263746 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students
Authors: Sagheer Ahmad
Abstract:
Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.Keywords: biology, innovative approaches, taxonomic classification, teaching
Procedia PDF Downloads 2503745 Brain-Motor Disablement: Using Virtual Reality-Based Therapeutic Simulations
Authors: Vince Macri, Jakub Petioky, Paul Zilber
Abstract:
Virtual-reality-based technology, i.e. video-game-like simulations (collectively, VRSims) are used in therapy for a variety of medical conditions. The purpose of this paper is to contribute to a discussion on criteria for selecting VRSims to augment treatment of survivors of acquired brain injury. Specifically, for treatments to improve or restore brain motor function in upper extremities affected by paresis or paralysis. Six uses of virtual reality are reviewed video games for entertainment, training simulations, unassisted or device-assisted movements of affected or unaffected extremities displayed in virtual environments and virtual anatomical interactivity.Keywords: acquired brain injury, brain-motor function, virtual anatomical interactivity, therapeutic simulations
Procedia PDF Downloads 5883744 Comparative Morphometric Analysis of Ambardi and Mangari Watersheds of Kadvi and Kasari River Sub-Basins in Kolhapur District, Maharashtra, India: Using Geographical Information System (GIS)
Authors: Chandrakant Gurav, Md. Babar
Abstract:
In the present study, an attempt is made to delineate the comparative morphometric analysis of Ambardi and Mangari watersheds of Kadvi and Kasari rivers sub-basins, Kolhapur District, Maharashtra India, using Geographical Information System (GIS) techniques. GIS is a computer assisted information method to store, analyze and display spatial data. Both the watersheds originate from Masai plateau of Jotiba- Panhala Hill range in Panhala Taluka of Kolhapur district. Ambardi watersheds cover 42.31 Sq. km. area and occur in northern hill slope, whereas Mangari watershed covers 54.63 Sq. km. area and occur on southern hill slope. Geologically, the entire study area is covered by Deccan Basaltic Province (DBP) of late Cretaceous to early Eocene age. Laterites belonging to late Pleistocene age also occur in the top of the hills. The objective of the present study is to carry out the morphometric parameters of watersheds, which occurs in differing slopes of the hill. Morphometric analysis of Ambardi watershed indicates it is of 4th order stream and Mangari watershed is of 5th order stream. Average bifurcation ratio of both watersheds is 5.4 and 4.0 showing that in both the watersheds streams flow from homogeneous nature of lithology and there is no structural controlled in development of the watersheds. Drainage density of Ambardi and Mangari watersheds is 3.45 km/km2 and 3.81 km/km2 respectively, and Stream Frequency is 4.51 streams/ km2 and 5.97 streams/ km2, it indicates that high drainage density and high stream frequency is governed by steep slope and low infiltration rate of the area for groundwater recharge. Textural ratio of both the watersheds is 6.6 km-1 and 9.6 km-1, which indicates that the drainage texture is fine to very fine. Form factor, circularity ratio and elongation ratios of the Ambardi and Mangari watersheds shows that both the watersheds are elongated in shape. The basin relief of Ambardi watershed is 447 m, while Mangari is 456 m. Relief ratio of Ambardi is 0.0428 and Mangari is 0.040. The ruggedness number of Ambardi is 1.542 and Mangari watershed is 1.737. The ruggedness number of both the watersheds is high which indicates the relief and drainage density is high.Keywords: Ambardi, Deccan basalt, GIS, morphometry, Mangari, watershed
Procedia PDF Downloads 3013743 ICT Education: Digital History Learners
Authors: Lee Bih Ni, Elvis Fung
Abstract:
This article is to review and understand the new generation of students to understand their expectations and attitudes. There are a group of students on school projects, creative work, educational software and digital signal source, the use of social networking tools to communicate with friends and a part in the competition. Today's students have been described as the new millennium students. They use information and communication technology in a more creative and innovative at home than at school, because the information and communication technologies for different purposes, in the home, usually occur in school. They collaborate and communicate more effectively when they are at home. Most children enter school, they will bring about how to use information and communication technologies, some basic skills and some tips on how to use information and communication technology will provide a more advanced than most of the school's expectations. Many teachers can help students, however, still a lot of work, "tradition", without a computer, and did not see the "new social computing networks describe young people to learn and new ways of working life in the future", in the education system of the benefits of using a computer.Keywords: ICT education, digital history, new generation of students, benefits of using a computer
Procedia PDF Downloads 4053742 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 873741 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 1383740 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.Keywords: artificial neural network, classification, students, e-learning
Procedia PDF Downloads 4263739 Technology, Music Education, and Social-Emotional Learning in Latin America
Authors: Jinan Laurentia Woo
Abstract:
This paper explores the intersection of technology, music education, and social-emotional learning (SEL) with a focus on Latin America. It delves into the impact of music education on social-emotional skills development, highlighting the universal significance of music across various life stages. The integration of artificial intelligence (AI) in music education is discussed, emphasizing its potential to enhance learning experiences. The paper also examines the implementation of SEL strategies in Latin American public schools, emphasizing the importance of fostering social-emotional well-being in educational settings. Challenges such as unequal access to technology and education in the region are addressed, calling for further research and investment in tech-assisted music education.Keywords: music education, social emotional learning, educational technology, Latin America, artificial intelligence, music
Procedia PDF Downloads 593738 Effects of Repetitive Strain/Stress Injury on the Human Body
Authors: Mohd Abdullah
Abstract:
This review describes some of the effects of repetitive strain/stress injury (RSI) on the human body especially among computer professionals today that spend extended hours of prolonged sitting in front of a computer day in and day out. The review briefly introduces the main factors that contribute to an increase of RSI among such computer professionals. The review briefly discusses how the human spinal column and knees are mainly affected by the onset of RSI resulting in poor posture. The root and secondary causes and effects of RSI are reviewed. The importance and value of the various breathing techniques are reviewed in an attempt to alleviate some of the effects of RSI. The review concludes with a small sample of suggested office stretches and poses geared towards at reducing RSI follows in this review. Readers will learn about the effects of RSI, as well as ways to cope with it. A better understanding of coping strategies may lead to well-being and a healthier overall lifestyle. Ultimately, the investment of time to connect with oneself with the poses and the power of the breath would promote a well-being that is overall healthier thus resulting in a better ability to cope/manage life stresses.Keywords: health, wellness, repetitive, chairs
Procedia PDF Downloads 1053737 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 3863736 Quantifying Firm-Level Environmental Innovation Performance: Determining the Sustainability Value of Patent Portfolios
Authors: Maximilian Elsen, Frank Tietze
Abstract:
The development and diffusion of green technologies are crucial for achieving our ambitious climate targets. The Paris Agreement commits its members to develop strategies for achieving net zero greenhouse gas emissions by the second half of the century. Governments, executives, and academics are working on net-zero strategies and the business of rating organisations on their environmental, social and governance (ESG) performance has grown tremendously in its public interest. ESG data is now commonly integrated into traditional investment analysis and an important factor in investment decisions. Creating these metrics, however, is inherently challenging as environmental and social impacts are hard to measure and uniform requirements on ESG reporting are lacking. ESG metrics are often incomplete and inconsistent as they lack fully accepted reporting standards and are often of qualitative nature. This study explores the use of patent data for assessing the environmental performance of companies by focusing on their patented inventions in the space of climate change mitigation and adaptation technologies (CCMAT). The present study builds on the successful identification of CCMAT patents. In this context, the study adopts the Y02 patent classification, a fully cross-sectional tagging scheme that is fully incorporated in the Cooperative Patent Classification (CPC), to identify Climate Change Adaptation Technologies. The Y02 classification was jointly developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) and provides means to examine technologies in the field of mitigation and adaptation to climate change across relevant technologies. This paper develops sustainability-related metrics for firm-level patent portfolios. We do so by adopting a three-step approach. First, we identify relevant CCMAT patents based on their classification as Y02 CPC patents. Second, we examine the technological strength of the identified CCMAT patents by including more traditional metrics from the field of patent analytics while considering their relevance in the space of CCMAT. Such metrics include, among others, the number of forward citations a patent receives, as well as the backward citations and the size of the focal patent family. Third, we conduct our analysis on a firm level by sector for a sample of companies from different industries and compare the derived sustainability performance metrics with the firms’ environmental and financial performance based on carbon emissions and revenue data. The main outcome of this research is the development of sustainability-related metrics for firm-level environmental performance based on patent data. This research has the potential to complement existing ESG metrics from an innovation perspective by focusing on the environmental performance of companies and putting them into perspective to conventional financial performance metrics. We further provide insights into the environmental performance of companies on a sector level. This study has implications of both academic and practical nature. Academically, it contributes to the research on eco-innovation and the literature on innovation and intellectual property (IP). Practically, the study has implications for policymakers by deriving meaningful insights into the environmental performance from an innovation and IP perspective. Such metrics are further relevant for investors and potentially complement existing ESG data.Keywords: climate change mitigation, innovation, patent portfolios, sustainability
Procedia PDF Downloads 833735 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks
Authors: Mahdi Bazarganigilani
Abstract:
Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks
Procedia PDF Downloads 1623734 Embedding Employability Skills in Computer and Information Science Program Curriculum
Authors: Nadezda Pizika
Abstract:
The paper discusses possible approaches of embedding the development of employability skills in the program curriculum. This paper contains analysis of the problem areas raised by employers regarding new graduates’ readiness to join workforce, the ways of possible improvements, and the actions required from different stakeholders. The case discussed in the paper is related to Computer and Information Science (CIS) Program offered at Higher Colleges of Technology (UAE).Keywords: curriculum design, employability skills, employers, graduates, education, entrepreneurship
Procedia PDF Downloads 3253733 Geographic Information System (GIS) for Structural Typology of Buildings
Authors: Néstor Iván Rojas, Wilson Medina Sierra
Abstract:
Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.Keywords: microzonation, buildings, geo-processing, cadastral number
Procedia PDF Downloads 3343732 Quick Reference: Cyber Attacks Awareness and Prevention Method for Home Users
Authors: Haydar Teymourlouei
Abstract:
It is important to take security measures to protect your computer information, reduce identify theft, and prevent from malicious cyber-attacks. With cyber-attacks on the continuous rise, people need to understand and learn ways to prevent from these attacks. Cyber-attack is an important factor to be considered if one is to be able to protect oneself from malicious attacks. Without proper security measures, most computer technology would hinder home users more than such technologies would help. Knowledge of how cyber-attacks operate and protective steps that can be taken to reduce chances of its occurrence are key to increasing these security measures. The purpose of this paper is to inform home users on the importance of identifying and taking preventive steps to avoid cyberattacks. Throughout this paper, many aspects of cyber-attacks will be discuss: what a cyber-attack is, the affects of cyber-attack for home users, different types of cyber-attacks, methodology to prevent such attacks; home users can take to fortify security of their computer.Keywords: cyber-attacks, home user, prevention, security, technology
Procedia PDF Downloads 3963731 A Comparative Study of the Challenges of E-Learning in Nigerian Universities
Authors: J. N. Anene, A. A. Bello, C. C. Anene
Abstract:
The paper carried out a comparative study of the challenges of e-learning in Nigerian universities. The purpose of the study was to determine if there was a significant difference in the challenges faced by students in e-learning in Nigerian Universities. A total of two hundred and twenty-eight students from nine universities constituted the sample for the study. A simple random sampling technique was employed in selecting thirty–two students from one of each university in the six geo-political zones of Nigeria. The questionnaire based on 'yes or no' and column charts constituted the instrument employed in the study. Percentages were used to analyse 'yes or no' while column charts were used to compare responds of the students. The finding of the study revealed that majority of students in all the universities under study claimed that their universities lacked appropriate software, that good quality educational content online was lacking, they also agreed that sustainability of e-learning was not prioritized, that they had no access to appropriate content for ICT-enhanced learning and training and that they had access to affordable and reliable computers. For lecturers, the computer certification should be the first on the list of promotion requirements. The finding of the study revealed that students from seven out of nine universities confirmed that their universities lack of appropriate software whereas the other two claimed that they have appropriate software. Also, out of nine universities, two disagreed to the fact that good quality educational content online lacked, whereas seven agreed that they lacked good quality educational content online. The finding of the study also revealed that most of the respondents in almost all the university under study agreed that sustainability of e-learning was not prioritized. The study recommended among other that the Nigerian Government should make concerted effort to provide the enablement for all lecturers and students to become computer literate. This should be done within a time frame, and at the end of the computer course, certificates should be issued, and no student should graduate in his or her field of study without passing the computer course.Keywords: e-learning, developing countries, computer literacy, ICT
Procedia PDF Downloads 3363730 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 100