Search results for: bulk waves
78 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification
Procedia PDF Downloads 13177 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process
Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois
Abstract:
Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor
Procedia PDF Downloads 13876 Municipal Action Against Urbanisation-Induced Warming: Case Studies from Jordan, Zambia, and Germany
Authors: Muna Shalan
Abstract:
Climate change is a systemic challenge for cities, with its impacts not happening in isolation but rather intertwined, thus increasing hazards and the vulnerability of the exposed population. The increase in the frequency and intensity of heat waves, for example, is associated with multiple repercussions on the quality of life of city inhabitants, including health discomfort, a rise in mortality and morbidity, increasing energy demand for cooling, and shrinking of green areas due to drought. To address the multi-faceted impact of urbanisation-induced warming, municipalities and local governments are challenged with devising strategies and implementing effective response measures. Municipalities are recognising the importance of guiding urban concepts to drive climate action in the urban environment. An example is climate proofing, which refers to a process of mainstreaming climate change into development strategies and programs, i.e., urban planning is viewed through a climate change lens. There is a multitude of interconnected aspects that are critical to paving the path toward climate-proofing of urban areas and avoiding poor planning of layouts and spatial arrangements. Navigating these aspects through an analysis of the overarching practices governing municipal planning processes, which is the focus of this research, will highlight entry points to improve procedures, methods, and data availability for optimising planning processes and municipal actions. By employing a case study approach, the research investigates how municipalities in different contexts, namely in the city of Sahab in Jordan, Chililabombwe in Zambia, and the city of Dortmund in Germany, are integrating guiding urban concepts to shrink the deficit in adaptation and mitigation and achieve climate proofing goals in their respective local contexts. The analysis revealed municipal strategies and measures undertaken to optimize existing building and urban design regulations by introducing key performance indicators and improving in-house capacity. Furthermore, the analysis revealed that establishing or optimising interdepartmental communication frameworks or platforms is key to strengthening the steering structures governing local climate action. The most common challenge faced by municipalities is related to their role as a regulator and implementers, particularly in budget analysis and instruments for cost recovery of climate action measures. By leading organisational changes related to improving procedures and methods, municipalities can mitigate the various challenges that may emanate from uncoordinated planning and thus promote action against urbanisation-induced warming.Keywords: urbanisation-induced warming, response measures, municipal planning processes, key performance indicators, interdepartmental communication frameworks, cost recovery
Procedia PDF Downloads 6975 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia PDF Downloads 17474 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic
Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman
Abstract:
To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective
Procedia PDF Downloads 7473 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation
Authors: Panagiotis Svarnas, Polykarpos Papadopoulos
Abstract:
Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force
Procedia PDF Downloads 13972 Mobile Genetic Elements in Trematode Himasthla Elongata Clonal Polymorphism
Authors: Anna Solovyeva, Ivan Levakin, Nickolai Galaktionov, Olga Podgornaya
Abstract:
Animals that reproduce asexually were thought to have the same genotypes within generations for a long time. However, some refuting examples were found, and mobile genetic elements (MGEs) or transposons are considered to be the most probable source of genetic instability. Dispersed nature and the ability to change their genomic localization enables MGEs to be efficient mutators. Hence the study of MGEs genomic impact requires an appropriate object which comprehends both representative amounts of various MGEs and options to evaluate the genomic influence of MGEs. Animals that reproduce asexually seem to be a decent model to study MGEs impact in genomic variability. We found a small marine trematode Himasthla elongata (Himasthlidae) to be a good model for such investigation as it has a small genome size, diverse MGEs and parthenogenetic stages in the lifecycle. In the current work, clonal diversity of cercaria was traced with an AFLP (Amplified fragment length polymorphism) method, diverse zones from electrophoretic patterns were cloned, and the nature of the fragments explored. Polymorphic patterns of individual cercariae AFLP-based fingerprints are enriched with retrotransposons of different families. The bulk of those sequences are represented by open reading frames of non-Long Terminal Repeats containing elements(non-LTR) yet Long-Terminal Repeats containing elements (LTR), to a lesser extent in variable figments of AFLP array. The CR1 elements expose both in polymorphic and conservative patterns are remarkably more frequent than the other non-LTR retrotransposons. This data was confirmed with shotgun sequencing-based on Illumina HiSeq 2500 platform. Individual cercaria of the same clone (i.e., originated from a single miracidium and inhabiting one host) has a various distribution of MGE families detected in sequenced AFLP patterns. The most numerous are CR1 and RTE-Bov retrotransposons, typical for trematode genomes. Also, we identified LTR-retrotransposons of Pao and Gypsy families among DNA transposons of CMC-EnSpm, Tc1/Mariner, MuLE-MuDR and Merlin families. We detected many of them in H. elongata transcriptome. Such uneven MGEs distribution in AFLP sequences’ sets reflects the different patterns of transposons spreading in cercarial genomes as transposons affect the genome in many ways (ectopic recombination, gene structure interruption, epigenetic silencing). It is considered that they play a key role in the origins of trematode clonal polymorphism. The authors greatly appreciate the help received at the Kartesh White Sea Biological Station of the Russian Academy of Sciences Zoological Institute. This work is funded with RSF 19-74-20102 and RFBR 17-04-02161 grants and the research program of the Zoological Institute of the Russian Academy of Sciences (project number AAAA-A19-119020690109-2).Keywords: AFLP, clonal polymorphism, Himasthla elongata, mobile genetic elements, NGS
Procedia PDF Downloads 12471 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather
Procedia PDF Downloads 16570 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents
Authors: Rajesh Kumar Gautam, Debabrata Seth
Abstract:
Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant
Procedia PDF Downloads 16269 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 10268 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products
Authors: Andrew Gray, Zhibing Zhang
Abstract:
The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour
Procedia PDF Downloads 13167 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland
Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski
Abstract:
Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics
Procedia PDF Downloads 40166 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array
Authors: Alastair Hales, Xi Jiang, Siming Zhang
Abstract:
Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics
Procedia PDF Downloads 18265 Nuancing the Indentured Migration in Amitav Ghosh's Sea of Poppies
Authors: Murari Prasad
Abstract:
This paper is motivated by the implications of indentured migration depicted in Amitav Ghosh’s critically acclaimed novel, Sea of Poppies (2008). Ghosh’s perspective on the experiences of North Indian indentured labourers moving from their homeland to a distant and unknown location across the seas suggests a radical attitudinal change among the migrants on board the Ibis, a schooner chartered to carry the recruits from Calcutta to Mauritius in the late 1830s. The novel unfolds the life-altering trauma of the bonded servants, including their efforts to maintain a sense of self while negotiating significant social and cultural transformations during the voyage which leads to the breakdown of familiar life-worlds. Equally, the migrants are introduced to an alternative network of relationships to ensure their survival away from land. They relinquish their entrenched beliefs and prejudices and commit themselves to a new brotherhood formed by ‘ship siblings.’ With the official abolition of direct slavery in 1833, the supply of cheap labour to the sugar plantation in British colonies as far-flung as Mauritius and Fiji to East Africa and the Caribbean sharply declined. Around the same time, China’s attempt to prohibit the illegal importation of opium from British India into China threatened the lucrative opium trade. To run the ever-profitable plantation colonies with cheap labour, Indian peasants, wrenched from their village economies, were indentured to plantations as girmitiyas (vernacularized from ‘agreement’) by the colonial government using the ploy of an optional form of recruitment. After the British conquest of the Isle of France in 1810, Mauritius became Britain’s premier sugar colony bringing waves of Indian immigrants to the island. In the articulations of their subjectivities one notices how the recruits cope with the alienating drudgery of indenture, mitigate the hardships of the voyage and forge new ties with pragmatic acts of cultural syncretism in a forward-looking autonomous community of ‘ship-siblings’ following the fracture of traditional identities. This paper tests the hypothesis that Ghosh envisions a kind of futuristic/utopian political collectivity in a hierarchically rigid, racially segregated and identity-obsessed world. In order to ground the claim and frame the complex representations of alliance and love across the boundaries of caste, religion, gender and nation, the essential methodology here is a close textual analysis of the novel. This methodology will be geared to explicate the utopian futurity that the novel gestures towards by underlining new regulations of life during voyage and dissolution of multiple differences among the indentured migrants on board the Ibis.Keywords: indenture, colonial, opium, sugar plantation
Procedia PDF Downloads 39864 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system
Procedia PDF Downloads 12463 Impact of Sufism on Indian Cinema: A New Cultural Construct for Mediating Conflict
Authors: Ravi Chaturvedi, Ghanshyam Beniwal
Abstract:
Without going much into the detail of long history of Sufism in the world and the etymological definition of the word ‘Sufi’, it will be sufficient to underline that the concept of Sufism was to focus the mystic power on the spiritual dimension of Islam with a view-shielding the believers from the outwardly and unrealistic dogma of the faith. Sufis adopted rather a liberal view in propagating the religious order of Islam suitable to the cultural and social environment of the land. It is, in fact, a mission of higher religious order of any faith, which disdains strife and conflict in any form. The joy of self-realization being the essence of religion is experienced after a long spiritual practice. India had Sufi and Bhakti (devotion) traditions in Islam and Hinduism, respectively. Both Sufism and Bhakti traditions were based on respect for different religions. The poorer and lower caste Hindus and Muslims were greatly influenced by these traditions. Unlike Ulemas and Brahmans, the Sufi and Bhakti saints were highly tolerant and open to the truth in other faiths. They never adopted sectarian attitudes and were never involved in power struggles. They kept away from power structures. Sufism is integrated with the Indian cinema since its initial days. In the earliest Bollywood movies, Sufism was represented in the form of qawwali which made its way from dargahs (shrines). Mixing it with pop influences, Hindi movies began using Sufi music in a big way only in the current decade. However, of late, songs with Sufi influences have become de rigueur in almost every film being released these days, irrespective of the genre, whether it is a romantic Gangster or a cerebral Corporate. 'Sufi is in the DNA of the Indian sub-continent', according to several contemporary filmmakers, critics, and spectators.The inherent theatricality motivates the performer of the 'Sufi' rituals for a dramatic behavior. The theatrical force of these stages of Sufi practice is so powerful that even the spectator cannot resist himself from being moved. In a multi-cultural country like India, the mediating streams have acquired a multi-layered importance in recent history. The second half of Indian post-colonial era has witnessed a regular chain of some conflicting religio-political waves arising from various sectarian camps in the country, which have compelled the counter forces to activate for keeping the spirit of composite cultural ethos alive. The study has revealed that the Sufi practice methodology is also being adapted for inclusion of spirituality in life at par to Yoga practice. This paper, a part of research study, is an attempt to establish that the Sufism in Indian cinema is one such mediating voice which is very active and alive throughout the length and width of the country continuously bridging the gap between various religious and social factions, and have a significant role to play in future as well.Keywords: Indian cinema, mediating voice, Sufi, yoga practice
Procedia PDF Downloads 49662 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 21961 Variation of Warp and Binder Yarn Tension across the 3D Weaving Process and its Impact on Tow Tensile Strength
Authors: Reuben Newell, Edward Archer, Alistair McIlhagger, Calvin Ralph
Abstract:
Modern industry has developed a need for innovative 3D composite materials due to their attractive material properties. Composite materials are composed of a fibre reinforcement encased in a polymer matrix. The fibre reinforcement consists of warp, weft and binder yarns or tows woven together into a preform. The mechanical performance of composite material is largely controlled by the properties of the preform. As a result, the bulk of recent textile research has been focused on the design of high-strength preform architectures. Studies looking at optimisation of the weaving process have largely been neglected. It has been reported that yarns experience varying levels of damage during weaving, resulting in filament breakage and ultimately compromised composite mechanical performance. The weaving parameters involved in causing this yarn damage are not fully understood. Recent studies indicate that poor yarn tension control may be an influencing factor. As tension is increased, the yarn-to-yarn and yarn-to-weaving-equipment interactions are heightened, maximising damage. The correlation between yarn tension variation and weaving damage severity has never been adequately researched or quantified. A novel study is needed which accesses the influence of tension variation on the mechanical properties of woven yarns. This study has looked to quantify the variation of yarn tension throughout weaving and sought to link the impact of tension to weaving damage. Multiple yarns were randomly selected, and their tension was measured across the creel and shedding stages of weaving, using a hand-held tension meter. Sections of the same yarn were subsequently cut from the loom machine and tensile tested. A comparison study was made between the tensile strength of pristine and tensioned yarns to determine the induced weaving damage. Yarns from bobbins at the rear of the creel were under the least amount of tension (0.5-2.0N) compared to yarns positioned at the front of the creel (1.5-3.5N). This increase in tension has been linked to the sharp turn in the yarn path between bobbins at the front of the creel and creel I-board. Creel yarns under the lower tension suffered a 3% loss of tensile strength, compared to 7% for the greater tensioned yarns. During shedding, the tension on the yarns was higher than in the creel. The upper shed yarns were exposed to a decreased tension (3.0-4.5N) compared to the lower shed yarns (4.0-5.5N). Shed yarns under the lower tension suffered a 10% loss of tensile strength, compared to 14% for the greater tensioned yarns. Interestingly, the most severely damaged yarn was exposed to both the largest creel and shedding tensions. This study confirms for the first time that yarns under a greater level of tension suffer an increased amount of weaving damage. Significant variation of yarn tension has been identified across the creel and shedding stages of weaving. This leads to a variance of mechanical properties across the woven preform and ultimately the final composite part. The outcome from this study highlights the need for optimised yarn tension control during preform manufacture to minimize yarn-induced weaving damage.Keywords: optimisation of preform manufacture, tensile testing of damaged tows, variation of yarn weaving tension, weaving damage
Procedia PDF Downloads 23660 Multilingual Students Acting as Language Brokers in Italy: Their Points of View and Feelings towards This Activity
Authors: Federica Ceccoli
Abstract:
Italy is undergoing one of its largest migratory waves, and Italian schools are reporting the highest numbers of multilingual students coming from immigrant families and speaking minority languages. For these pupils, who have not perfectly acquired their mother tongue yet, learning a second language may represent a burden on their linguistic development and may have some repercussions on their school performances and relational skills. These are some of the reasons why they have turned out to be those who have the worst grades and the highest school drop-out rates. However, despite these negative outcomes, it has been demonstrated that multilingual immigrant students frequently act as translators or language brokers for their peers or family members who do not speak Italian fluently. This activity has been defined as Child Language Brokering (hereinafter CLB) and it has become a common practice especially in minority communities as immigrants’ children often learn the host language much more quickly than their parents, thus contributing to their family life by acting as language and cultural mediators. This presentation aims to analyse the data collected by a research carried out during the school year 2014-2015 in the province of Ravenna, in the Northern Italian region of Emilia-Romagna, among 126 immigrant students attending junior high schools. The purpose of the study was to analyse by means of a structured questionnaire whether multilingualism matched with language brokering experiences or not and to examine the perspectives of those students who reported having acted as translators using their linguistic knowledge to help people understand each other. The questionnaire consisted of 34 items roughly divided into 2 sections. The first section required multilingual students to provide personal details like their date and place of birth, as well as details about their families (number of siblings, parents’ jobs). In the second section, they were asked about the languages spoken in their families as well as their language brokering experience. The in-depth questionnaire sought to investigate a wide variety of brokering issues such as frequency and purpose of the activity, where, when and which documents young language brokers translate and how they feel about this practice. The results have demonstrated that CLB is a very common practice among immigrants’ children living in Ravenna and almost all students reported positive feelings when asked about their brokering experience with their families and also at school. In line with previous studies, responses to the questionnaire item regarding the people they brokered for revealed that the category ranking first is parents. Similarly, language-brokering activities tend to occur most often at home and the documents they translate the most (either orally or in writing) are notes from teachers. Such positive feelings towards this activity together with the evidence that it occurs very often in schools have laid the foundation for further projects on how this common practice may be valued and used to strengthen the linguistic skills of these multilingual immigrant students and thus their school performances.Keywords: immigration, language brokering, multilingualism, students' points of view
Procedia PDF Downloads 17959 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V
Authors: Javed Iqbal
Abstract:
The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells
Procedia PDF Downloads 24158 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method
Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili
Abstract:
The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method
Procedia PDF Downloads 19857 Amine Sulphonic Acid Additives for Improving Energy Storage Capacity in Alkaline Gallocyanine Flow Batteries
Authors: Eduardo Martínez González, Mousumi Dey, Pekka Peljo
Abstract:
Transitioning to a renewable energy model is inevitable owing to the effects of climate change. These energies are aimed at sustainability and a positive impact on the environment, but they are intermittent energies; their connection to the electrical grid depends on creating long-term, efficient, and low-cost energy storage devices. Redox flow batteries are attractive technologies to address this problem, as they store energy in solution through external tanks known as posolyte (solution to storage positive charge) and negolyte (solution to storage negative charge). During the charging process of the device, the posolyte and negolyte solutions are pumped into an electrochemical cell (which has the anode and cathode separated by an ionic membrane), where they undergo oxidation and reduction reactions at electrodes, respectively. The electrogenerated species should be stable and diffuse into the bulk solution. It has been possible to connect gigantic redox flow batteries to the electrical grid. However, the devices created do not fit with the sustainability criteria since their electroactive material consists of vanadium (material scarce and expensive) solutions dissolved in an acidic medium (e.g., 9 mol L-1 of H₂SO₄) that is highly corrosive; so, work is being done on the design of organic-electroactive electrolytes (posolytes and nogolytes) for their operation at different pH values, including neutral medium. As a main characteristic, negolyte species should have low reduction potential values, while the reverse is true for the oxidation process of posolytes. A wide variety of negolytes that store 1 and up to 2 electrons per molecule (in aqueous medium) have been publised. Gallocyanine compound was recently introduced as an electroactive material for developing alkaline flow battery negolytes. The system can storage two electrons per molecule, but its unexpectedly low water solubility was improved with an amino sulphonic acid additive. The cycling stability of and improved gallocyanine electrolyte was demonstrated by operating a flow battery cell (pairing the system to a posolyte composed of ferri/ferrocyanide solution) outside a glovebox. We also discovered that the additive improves the solubility of gallocyanine, but there is a kinetic price to pay for this advantage. Therefore, in this work, the effect of different amino sulphonic acid derivatives on the kinetics and solubility of gallocyanine compound was studied at alkaline solutions. The additive providing a faster electron transfer rate and high solubility was tested in a flow battery cell. An aqueous organic flow battery electrolyte working outside a glovebox with 15 mAhL-1 will be discussed. Acknowledgments: To Bi3BoostFlowBat Project (2021-2025), funded by the European Research Concil. For support with infrastructure, reagents, and a postdoctoral fellowship to Dr. Martínez-González.Keywords: alkaline flow battery, gallocyanine electroactive material, amine-sulphonic acid additives, improved solubility
Procedia PDF Downloads 2856 Seafloor and Sea Surface Modelling in the East Coast Region of North America
Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk
Abstract:
Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.Keywords: seafloor, sea surface height, bathymetry, satellite altimetry
Procedia PDF Downloads 8055 A Challenge to Conserve Moklen Ethnic House: Case Study in Tubpla Village, Phang Nga Province, Southern Thailand
Authors: M. Attavanich, H. Kobayashi
Abstract:
Moklen is a sub-group of ethnic minority in Thailand. In the past, they were vagabonds of the sea. Their livelihood relied on the sea but they built temporary shelters to avoid strong wind and waves during monsoon season. Recently, they have permanently settled on land along coastal area and mangrove forest in Phang Nga and Phuket Province, Southern Thailand. Moklen people have their own housing culture: the Moklen ethnic house was built from local natural materials, indicating a unique structure and design. Its wooden structure is joined by rattan ropes. The construction process is very unique because of using body-based unit of measurement for design and construction. However, there are several threats for those unique structures. One of the most important threats on Moklen ethnic house is tsunami. Especially the 2004 Indian Ocean Tsunami caused widely damage to Southern Thailand and Phang Nga province was the most affected area. In that time, Moklen villages which are located along the coastal area also affected calamitously. In order to recover the damage in affected villages, mostly new modern style houses were provided by aid agencies. This process has caused a significant impact on Moklen housing culture. Not only tsunami, but also modernization has an influence on the changing appearance of the Moklen houses and the effect of modernization has been started to experience before the tsunami. As a result, local construction knowledge is very limited nowadays because the number of elderly people in Moklen has been decreasing drastically. Last but not the least, restrictions of construction materials which are originally provided from accessible mangroves, create limitations in building a Moklen house. In particular, after the Reserved Forest Act, wood chopping without any permission has become illegal. These are some of the most important reasons for Moklen ethnic houses to disappear. Nevertheless, according to the results of field surveys done in 2013 in Phang Nga province, it is found out that some Moklen ethnic houses are still available in Tubpla Village, but only a few. Next survey in the same area in 2014 showed that number of Moklen houses in the village has been started to increase significantly. That proves that there is a high potential to conserve Moklen houses. Also the project of our research team in February 2014 contributed to continuation of Moklen ethnic house. With the cooperation of the village leader and our team, it was aimed to construct a Moklen house with the help of local participants. For the project, villagers revealed the building knowledge and techniques, and in the end, project helped community to understand the value of their houses. Also, it was a good opportunity for Moklen children to learn about their culture. In addition, NGOs recently have started to support ecotourism projects in the village. It not only helps to preserve a way of life, but also contributes to preserve indigenous knowledge and techniques of Moklen ethnic house. This kind of supporting activities are important for the conservation of Moklen ethnic houses.Keywords: conservation, construction project, Moklen Ethnic House, 2004 Indian Ocean tsunami
Procedia PDF Downloads 30954 The Use of Social Media Sarcasm as a Response to Media-Coverage of Iran’s Unprecedented Attack on Israel
Authors: Afif J. Arabi
Abstract:
On April 15, 2024, Iran announced its unprecedented military attack by sending waves of more than 300 drones and ballistic missiles toward Israel. The Attack lasted approximately five hours and was a widely covered, distributed, and followed media event. Iran’s military action against Israel was a long-awaited action across the Middle East since the early days of the October 7th war on Gaza and after a long history of verbal threats. While people in many Arab countries stayed up past midnight in anticipation of watching the disastrous results of this unprecedented attack, voices on traditional and social media alike started to question the timed public announcement of the attack, which gave Israel at least a two-hour notice to prepare its defenses. When live news coverage started showing that nearly all the drones and missiles were intercepted by Israel – with help from the U.S. and other countries – and no deaths were reported, the social media response to this media event turned toward sarcasm, mockery, irony, and humor. Social media users posted sarcastic pictures, jokes, and comments mocking the Iranian offensive. This research examines this unique media event and the sarcastic response it generated on social media. The study aims to investigate the causes leading to media sarcasm in militarized political conflict, the social function of such generated sarcasm, and the role of social media as a platform for consuming frustration, dissatisfaction, and outrage passively through various media products. The study compares the serious traditional media coverage of the event with the humorous social media response among Arab countries. The research uses an eclectic theoretical approach using framing theory as a paradigm for understanding and investigating communication social functionalism theory in media studies to examine sarcasm. Social functionalism theory is a sociological perspective that views society as a complex system whose parts work together to promote solidarity and stability. In the context of media and sarcasm, this theory would suggest that sarcasm serves specific functions within society, such as reinforcing social norms, providing a means for social critique, or functioning as a safety valve for expressing social tension.; and a qualitative analysis of specific examples including responses of SM commentators to such manifestations of political criticism. The preliminary findings of this study point to a heightened dramatization of the televised event and a widespread belief that this attack was a staged show incongruent with Iran’s official enmity and death threats toward Israel. The social media sarcasm reinforces Arab’s view of Iran and Israel as mutual threats. This belief stems from the complex dynamics, historical context, and regional conflict surrounding these three nations: Iran, Israel, and Arabs.Keywords: social functionalism, social media sarcasm, Television news framing, live militarized conflict coverage, iran, israel, communication theory
Procedia PDF Downloads 4453 Evaluating the Impact of Early Maternal Incarceration on Male Delinquent Behavior during Emerging Adulthood through the Mediating Mechanism of Mastery
Authors: Richard Abel
Abstract:
In the United States, increased incarceration rates have caused many adolescents to feel the strain of parental absence. This absence is then manifest through adolescent feelings of parental rejection. Additionally, upon reentry maternal incarceration may be related to adolescents experienced perceived excessive disciple. It is possible parents engage in this manner of discipline attempting to prevent the child from taking the same path to incarceration as the parent. According to General Strain Theory, adolescents encountering strain are likely to experience negative emotions. The emotion that is most likely to lead to delinquency is anger through reduced inhibitions and motivation to act. Additionally, males are more likely to engage in delinquent behavior, regardless of experiencing strain. This is not the case for every male who experiences maternal incarceration, parental rejection, excessive discipline, or anger. There are protective factors that enable agency within individuals. One such protective factor is mastery, or the perception that one is in control of his or her own future. The model proposed in this research suggests maternal incarceration is associated with increased parental rejection and excessive discipline in males. Males experiencing parental rejection and excessive discipline are likely to experience increased anger, which is then associated with increases in delinquent behavior. This model explores whether agency, in the form of mastery, mediates the relationship between strains and negative emotions, or between negative emotions and delinquent behavior. The Kaplan Longitudinal and Multigenerational Study (KLAMS) dataset is uniquely situated to analyze this model providing longitudinal data collected from both parents and their offspring. Maternal incarceration is constructed using parental responses such that the mother was incarcerated after the child’s birth, and any incarceration that happened prior to birth is excluded. The remaining variables of the study are all constructed from varying waves of the adolescent survey. Parental rejection, along with control variables for age, race, parental socioeconomic status, neighborhood effects, delinquent peers, and prior delinquent behavior are all constructed using Wave I data. To increase causal inference, the negative emotion of anger and the mediating variable of mastery are measured during Wave II. Lastly, delinquent behavior is measured at Wave III. Results of the analysis show expected relationships such that adolescent males encountering maternal incarceration show increased perception of parental rejection and excessive discipline. Additionally, there is a positive relationship between parental rejection and excessive discipline at Wave I and feelings of anger at Wave II for males. For males experiencing either of these strains in Wave I, feelings of anger in Wave II are found to be associated with increased delinquent behavior in Wave III. Mastery was found to mediate the relationship between both parental rejection and excessive discipline and anger, but no such mediation occurs in the relationship between anger and delinquency, regardless of the strain being experienced. These findings suggest adolescent males who feel they are in control of their own lives are less likely to experience negative emotions produced by the occurrence of strain, thereby decreasing male engagement in delinquent behavior later in life.Keywords: delinquency, mastery, maternal incarceration, strain
Procedia PDF Downloads 13352 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints
Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia
Abstract:
Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior
Procedia PDF Downloads 21351 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years
Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng
Abstract:
Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics
Procedia PDF Downloads 750 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 6849 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System
Authors: Asegid Belay Kebede, Getachew Biru Worku
Abstract:
The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit
Procedia PDF Downloads 76