Search results for: Soil Side Corrosion
4352 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 3264351 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil
Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab
Abstract:
Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy
Procedia PDF Downloads 1644350 Peak Floor Response for Buildings with Flexible Base
Authors: Luciano Roberto Fernandez-Sola, Cesar Augusto Arredondo-Velez, Miguel Angel Jaimes-Tellez
Abstract:
This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal.Keywords: peak floor intensities, dynamic soil-structure interaction, buildings with flexible base, kinematic and inertial interaction
Procedia PDF Downloads 4544349 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi
Authors: Farhan Ali
Abstract:
Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.Keywords: pathogens, wastewater, concentration, effluent
Procedia PDF Downloads 2994348 Biological Soil Crust Effects on Dust Control Around the Urmia Lake
Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh
Abstract:
Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.Keywords: wind erosion, algae, cyanobacteria, carbohydrate
Procedia PDF Downloads 654347 Water Balance in the Forest Basins Essential for the Water Supply in Central America
Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan
Abstract:
The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.Keywords: Costa Rica, infiltration, soil, water
Procedia PDF Downloads 3854346 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio
Procedia PDF Downloads 1994345 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines
Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines.Keywords: beam deformation, EPS block, laboratory test, post-Beam system, soil surface settlement
Procedia PDF Downloads 2394344 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms
Procedia PDF Downloads 3534343 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection
Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi
Abstract:
The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure
Procedia PDF Downloads 2804342 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil
Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar
Abstract:
A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants
Procedia PDF Downloads 4184341 Agricultural Land Suitability Analysis of Kampe-Omi Irrigation Scheme Using Remote Sensing and Geographic Information System
Authors: Olalekan Sunday Alabi, Titus Adeyemi Alonge, Olumuyiwa Idowu Ojo
Abstract:
Agricultural land suitability analysis and mapping play an imperative role for sustainable utilization of scarce physical land resources. The objective of this study was to prepare spatial database of physical land resources for irrigated agriculture and to assess land suitability for irrigation and developing suitable area map of the study area. The study was conducted at Kampe-Omi irrigation scheme located at Yagba West Local Government Area of Kogi State, Nigeria. Temperature and rainfall data of the study area were collected for 10 consecutive years (2005-2014). Geographic Information System (GIS) techniques were used to develop irrigation land suitability map of the study area. Attribute parameters such as the slope, soil properties, topography of the study area were used for the analysis. The available data were arranged, proximity analysis of Arc-GIS was made, and this resulted into five mapping units. The final agricultural land suitability map of the study area was derived after overlay analysis. Based on soil composition, slope, soil properties and topography, it was concluded that; Kampe-Omi has rich sandy loam soil, which is viable for agricultural purpose, the soil composition is made up of 60% sand and 40% loam. The land-use pattern map of Kampe-Omi has vegetal area and water-bodies covering 55.6% and 19.3% of the total assessed area respectively. The landform of Kampe-Omi is made up of 41.2% lowlands, 37.5% normal lands and 21.3% highlands. Kampe-Omi is adequately suitable for agricultural purpose while an extra of 20.2% of the area is highly suitable for agricultural purpose making 72.6% while 18.7% of the area is slightly suitable.Keywords: remote sensing, GIS, Kampe–Omi, land suitability, mapping
Procedia PDF Downloads 2174340 Provision Electronic Management Requirements in Libyan Oil Companies
Authors: Hitham Yami
Abstract:
This study will focus primarily on assessing the availability requirements of the electronic management of oil companies in Libya, and the mean objectives of the research applying electronic management and make recommendations and steps to approach electronic management. There are limited research and statistical analysis to support electronic management in Libyan companies. The groundwork for the proposed approach is to develop independent variables and the dependent variables to be restructured after it Alntra side of the field and the side to get the data to achieve the desired results and solving the problem faced by the Libyan Oil Corporation. All these strategies are proposed to achieve the goal, and solving Libyan oil installations.Keywords: oil company’s revenue, independent variables, electronic management, Libyan oil corporation
Procedia PDF Downloads 2654339 The Behavior of Ordinary and Encased Stone Columns in Soft Clay Soil of Egypt: A Finite Element Study
Authors: Mahmoud F. Awad-Allah, Mohammed Rabeih, Eman Abdel Baseer
Abstract:
Soft to very soft soil deposits are widely speared in some areas of Egypt such as East Port Said, Damietta, Kafr El-Sheik, Alexandria, etc. The construction projects in these areas have faced the challenge of the presence of extended deep layers of soft and very soft clays which reach to depths of 40 to 60 m from the ground level. Stone columns are commonly used to support structures overlying soft ground soils and surcharged by embankment type loading. Therefore, this paper introduces a wide comparison numerical study between the ordinary stone columns (OSC) versus the geosynthetic encased stone columns (ESC) installed in soft clay soil deposit using finite element method (FEM). Parametric study of an embankment on soft soils reinforced with stone columns is performed using commercial computer program based on the finite element technique (PLAXIS 2D). The investigation will present the influence of the following parameters: diameter of stone columns, stiffness of geosynthetic encasement, embedded depth of stone column from ground level, and the length encasement of the stone column on the consolidation time, vertical settlement, and lateral displacement of soft clay soil formations.Keywords: finite element method, geosynthetic, lateral displacement, settlement, soft clay
Procedia PDF Downloads 2134338 Influence of Climate Change on Landslides in Northeast India: A Case Study
Authors: G. Vishnu, T. V. Bharat
Abstract:
Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics
Procedia PDF Downloads 1154337 Spatial Distribution of Natural Radionuclides in Soil, Sediment and Waters in Oil Producing Areas in Niger Delta Region of Nigeria
Authors: G. O. Avwiri, E. O. Agbalagba, C. P. Ononugbo
Abstract:
Activity concentrations of natural radionuclides (226Ra, 232Th and 40K) in the soil, sediment and water of oil producing communities in Delta and Rivers States were determined using γ-ray spectrometry. The mean soil/sediment activity concentration of 226Ra, 232Th and 40K in onshore west in Delta state is 40.2±5.1Bqkg-1, 29.9±4.2Bqkg-1 and 361.5±20.0Bqkg-1 respectively, the corresponding values obtained in onshore east1 of Rivers state is 20.9±2.8Bqkg-1, 19.4±2.5Bqkg-1and 260.0±14.1Bqkg-1 respectively. While the mean activity concentration of 226Ra, 232Th and 40K in onshore east2 of Rivers state is 29.3±3.5Bqkg-1, 21.6±2.6Bqkg-1 and 262.1±14.6Bqkg-1 respectively. These values obtained show enhanced NORMs but are well within the world range. All the radiation hazard indices examined in soil have mean values lower than their maximum permissible limits. In drinking water, the obtained average values of226Ra, 228Ra and 40K is 8.4±0.9, 7.3±0.7 and 29.9±2.2Bql-1 respectively for well water, 4.5±0.6, 5.1±0.4 and 20.9±2.0Bql-1 respectively for borehole water and 11.3±1.2, 8.5±0.7 and 32.4±3.7Bql-1 respectively for river water in onshore west. For onshore east1, average activity concentration of 226Ra, 228Ra and 40K is 8.3±1.0, 8.6±1.1 and 39.6±3.3Bql-1 respectively for well water, 3.8±0.8, 4.9±0.6 and 35.7±4.1Bql-1 respectively for borehole water and 5.5±0.8, 5.4±0.7 and 36.9±3.8Bql-1 respectively for river water. While in onshore east2 average value of 226Ra, 228Ra and 40K is 10.1±1.1, 8.3±1.0 and 50.0±3.9Bql-1 respectively for well water, 4.7±0.9, 4.0±0.4 and 28.8±3.0Bql-1 respectively for borehole water and 7.7±0.9, 6.1±0.8 and 27.1±2.9Bql-1 respectively for river water and the average activity concentrations in the produced water226Ra, 228Ra and 40K is 5.182.14Bql-1, 6.042.48Bql-1 and 48.7813.67Bql-1 respectively. These values obtained are well above world average values of 1.0, 0.1 and 10Bql-1 for 226Ra, 228Ra and 40K respectively, those of the control site values and most reported values around the world. Though the hazard indices (Raeq, Hex, Hin) examined in water is still within the tolerable level, the committed effective dose estimated are above ICPR 0.1 mSvy-1 permissible limits. The overall results show that soil and sediment in the area are safe radiologically, but the result indicates some level of water pollution in the studied area.Keywords: radioactivity, soil, sediment and water, Niger Delta, gamma detector
Procedia PDF Downloads 2834336 20th-Century River Course Changes and Their Relation to Sediment Carbon Distribution Patterns in the Yellow River Delta
Authors: Dongxue Li, Zhonghua Ning, Yi’na Li, Baoshan Cui, Wasner Daniel, Sebastian Dötterl
Abstract:
Most of the world's coastal alluvial plains can be significant carbon (C) eservoirs in which upland sediments are deposited and bury former topsoil, thereby contributing to soil C preservation, especially in river-controlled deltas like the Yellow River Delta, China. These deltas are affected by the continuous large amount of sediment transport and strong river dynamics from the upper reaches, which makes the river course in the deltas change frequently. However, the impact of varying river course changes on C stocks in these estuary wetlands is unclear. To investigate this, we drilled five 2 m cores along a sediment deposition sequence of the Yellow River Delta, which shifted its main course flow in the delta several times throughout the 20th century. Covering 80 years of sediment deposition, we explored both soil C stocks and their potential sources, and identified key soil physicochemical and hydrometeorological variables that correlate to C density and deposition rate. Further, the spatiotemporal C distribution and its relationship with these variables was examined. Our results showed that sediments at a soil depth of 200 cm in the main courses of the Yellow River corresponded to deposition ages ranging from 1942 to 1989. The oldest course has the lowest C stocks and showed C-enriched compared with younger courses. Contributions of soil C stemming from fresh particulate organic carbon from deposited upstream sources were significantly higher than local, in-situ vegetation. In addition, the carbon of the oldest and relatively young courses tends to be affected by interaction effects of hydrometeorological and physiochemical varibales, and that of the middle courses tends to be affected by independent variables. Our findings can help prioritize conservation efforts across different river courses and provide quantitative support for global carbon emission reduction by assessing sediment carbon reservoirs.Keywords: alluvial plains, coastal wetland, core drilling, course diversion, organic carbon, sediment deposition rate, soil deposition
Procedia PDF Downloads 294335 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test
Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri
Abstract:
Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity
Procedia PDF Downloads 1124334 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou
Authors: Boukari Abdou Wakilou
Abstract:
Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin
Procedia PDF Downloads 704333 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment
Authors: Can Mungan, Gokhan Kilic
Abstract:
Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position
Procedia PDF Downloads 1214332 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part
Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang
Abstract:
Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems
Procedia PDF Downloads 2104331 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel
Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid
Abstract:
This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity
Procedia PDF Downloads 1914330 Soil-Structure Interaction in Stiffness and Strength Degrading Systems
Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak
Abstract:
We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.Keywords: inelastic, seismic, building, foundation, interaction
Procedia PDF Downloads 2874329 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils
Authors: Waddah Abdullah, Saleh Al-Sarem
Abstract:
Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency
Procedia PDF Downloads 1864328 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray
Abstract:
Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer
Procedia PDF Downloads 754327 Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi
Authors: Abel Mahowe
Abstract:
Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals.Keywords: aquatic, erosion, furrow, soil
Procedia PDF Downloads 2894326 Mechanical-Reliability Coupling for a Bearing Capacity Assessment of Shallow Foundations
Authors: Amal Hentati, Mbarka Selmi, Tarek Kormi, Julien Baroth, Barthelemy Harthong
Abstract:
The impact of uncertainties on the performance assessment of shallow foundations is often significant. The need of the geotechnical engineers to a more objective and rigorous description of soil variations permitting to quantify these uncertainties and to incorporate them into calculation methods led to the development of reliability approaches. In this context, a mechanical-reliability coupling was developed in this paper, using a program coded in Matlab and the finite element software Abaqus, for the bearing capacity assessment of shallow foundations. The reliability analysis, based on the finite element method, assumed both soil cohesion and friction angle as uncertain parameters characterized by normal or lognormal probability distributions. The inherent spatial variability of both soil properties was, then, taken into account using 1D stationary random fields. The application of the proposed methodology to a shallow foundation subjected to a centered vertical loading permitted to highlight the proposed process interest. Findings proved the insufficiency of the conventional approach to predict the foundation failure and a high sensitivity of the ultimate loads to the soil properties uncertainties, mainly those related to the friction angle, was noted. Moreover, an asymmetry of both displacement and velocity fields was obtained.Keywords: mechanical-reliability coupling, finite element method, shallow foundation, random fields, spatial variability
Procedia PDF Downloads 6614325 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions
Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad
Abstract:
This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability
Procedia PDF Downloads 3164324 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 1474323 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria
Authors: Ayodele A. Otaiku
Abstract:
Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture
Procedia PDF Downloads 272