Search results for: tumor immune response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6350

Search results for: tumor immune response

5060 Rewilding the River: Assessing the Environmental Effects and Regulatory Influences of the Condit Dam Removal Process

Authors: Neda Safari, Jacob Petersen-Perlman

Abstract:

There are more than two million dams in the United States, and a considerable portion of them are either non-operational or approaching the end of their designed lifespan. However, this emerging trend is new, and the majority of dam sites have not undergone thorough research and assessments after their removal to determine the overall effectiveness of restoration initiatives, particularly in the case of large-scale dams that may significantly impact their surrounding areas. A crucial factor to consider is the lack of specific regulations pertaining to dam removal at the federal level. Consequently, other environmental regulations that were not originally designed with dam removal considerations are used to execute these projects. This can result in delays or challenges for dam removal initiatives. The process of removing dams is usually the most important first step to restore the ecological and biological health of the river, but often there is a lack of measurable indicators to assess if it has achieved its intended objectives. In addition, the majority of studies on dam removal are only short-term and focus on a particular measure of response. Therefore, it is essential to conduct extensive and continuous monitoring to analyze the river's response throughout every aspect. Our study is divided into two sections. The first section of my research will analyze the establishment and utilization of dam removal laws and regulations in the Condit Dam removal process. We will highlight the areas where the frameworks for policy and dam removal projects remain in need of improvement in order to facilitate successful dam removals in the future. In this part, We will review the policies and plans that affected the decision-making process to remove the Condit dam while also looking at how they impacted the physical changes to the river after the dam was removed. In the second section, we will look at the effects of the dam removal over a decade later and attempt to determine how the river's physical response has been impacted by this modification. Our study aims to investigate the Condit dam removal process and its impact on the ecological response of the river. We anticipate identifying areas for improvement in policies pertaining to dam removal projects and exploring ways to enhance them to ensure improved project outcomes in the future.

Keywords: dam removal, ecolocgical change, water related regulation, water resources

Procedia PDF Downloads 43
5059 The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works.

Keywords: aspect ratio, flexible cylinder, vortex-shedding, VIV

Procedia PDF Downloads 483
5058 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 474
5057 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 362
5056 Impact of Pandemics on Cities and Societies

Authors: Deepak Jugran

Abstract:

Purpose: The purpose of this study is to identify how past Pandemics shaped social evolution and cities. Methodology: A historical and comparative analysis of major historical pandemics in human history their origin, transmission route, biological response and the aftereffects. A Comprehensive pre & post pandemic scenario and focuses selectively on major issues and pandemics that have deepest & lasting impact on society with available secondary data. Results: Past pandemics shaped the behavior of human societies and their cities and made them more resilient biologically, intellectually & socially endorsing the theory of “Survival of the fittest” by Sir Charles Darwin. Pandemics & Infectious diseases are here to stay and as a human society, we need to strengthen our collective response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, & especially animals who become carriers for these viruses. Conclusion: Pandemics always resulted in great mortality, but they also improved the overall individual human immunology & collective social response; at the same time, they also improved the public health system of cities, health delivery systems, water, sewage distribution system, institutionalized various welfare reforms and overall collective social response by the societies. It made human beings more resilient biologically, intellectually, and socially hence endorsing the theory of “AGIL” by Prof Talcott Parsons. Pandemics & infectious diseases are here to stay and as humans, we need to strengthen our city response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, especially animals who always acted as carriers for these novel viruses. Pandemics over the years acted like natural storms, mitigated the prevailing social imbalances and laid the foundation for scientific discoveries. We understand that post-Covid-19, institutionalized city, state and national mechanisms will get strengthened and the recommendations issued by the various expert groups which were ignored earlier will now be implemented for reliable anticipation, better preparedness & help to minimize the impact of Pandemics. Our analysis does not intend to present chronological findings of pandemics but rather focuses selectively on major pandemics in history, their causes and how they wiped out an entire city’s population and influenced the societies, their behavior and facilitated social evolution.

Keywords: pandemics, Covid-19, social evolution, cities

Procedia PDF Downloads 107
5055 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation

Authors: Niloufar Ghoreishi, Ali Nekouzadeh

Abstract:

The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.

Keywords: flight stability, phugoid mode, short period mode, climb phase, damping coefficient

Procedia PDF Downloads 158
5054 Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria

Authors: S. J. Ha, S. J. Baik, T. O. Kim, S. W. Han

Abstract:

For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively.

Keywords: algorithm, ground motion, response history analysis, selection

Procedia PDF Downloads 284
5053 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement

Authors: Abtin Farokhipanah

Abstract:

In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.

Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient

Procedia PDF Downloads 350
5052 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level

Authors: Ramin Mehdiabadi

Abstract:

Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.

Keywords: breast cancer, gene expression, FoxM1, microRNA

Procedia PDF Downloads 44
5051 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 489
5050 Mitigation of Seismic Forces Effect on Highway Bridge Using Aseismic Bearings

Authors: Kaoutar Zellat, Tahar Kadri

Abstract:

The purpose of new aseismic techniques is to provide an additional means of energy dissipation, thereby reducing the transmitted acceleration into the superstructure. In order to demonstrate the effectiveness of aseismic bearings technique and understand the behavior of seismically isolated bridges by such devices a three-span continuous deck bridge made of reinforced concrete is considered. The bridge is modeled as a discrete model and the relative displacements of the isolation bearing are crucial from the design point of view of isolation system and separation joints at the abutment level. The systems presented here are passive control systems and the results of some important experimental tests are also included. The results show that the base shear in the piers is significantly reduced for the isolated system as compared to the non isolated system in the both directions of the bridge. This indicates that the use of aseismic systems is effective in reducing the earthquake response of the bridge.

Keywords: aseismic bearings, bridge isolation, bridge, seismic response

Procedia PDF Downloads 356
5049 Development of Low Glycemic Gluten Free Bread from Barnyard Millet and Lentil Flour

Authors: Hemalatha Ganapathyswamy, Thirukkumar Subramani

Abstract:

Celiac disease is an autoimmune response to dietary wheat gluten. Gluten is the main structure forming protein in bread and hence developing gluten-free bread is a technological challenge. The study aims at using nonwheat flours like barnyard millet and lentil flour to replace wheat in bread formulations. Other characteristics of these grains, such as high protein, soluble fiber, mineral content and bioactive components make them attractive alternatives to traditional gluten-free ingredients in the production of high protein, gluten-free bread. The composite flour formulations for the development of gluten-free bread were optimized using lentil flour (50 to 70 g), barnyard millet flour (0 to 30 g) and corn flour (0 to 30 g) by means of response surface methodology with various independent variables for physical, sensorial and nutritional characteristics. The optimized composite flour which had a desirability value of 0.517, included lentil flour –62.94 g, barnyard millet flour– 24.34 g and corn flour– 12.72 g with overall acceptability score 8.00/9.00. The optimized gluten-free bread formulation had high protein (14.99g/100g) and fiber (1.95g/100g) content. The glycemic index of the gluten-free bread was 54.58 rendering it as low glycemic which enhances the functional benefit of the gluten-free bread. Since the standardised gluten-free bread from barnyard millet and lentil flour are high protein, and gluten-free with low glycemic index, the product would serve as an ideal therapeutic food in the management of both celiac disease and diabetes mellitus with better nutritional value.

Keywords: gluten free bread, lentil, low glycemic index, response surface methodology

Procedia PDF Downloads 184
5048 Experimental Simulation of Soil Boundary Condition for Dynamic Studies

Authors: Omar S. Qaftan, T. T. Sabbagh

Abstract:

This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.

Keywords: soil, seismic, earthquake, interaction

Procedia PDF Downloads 292
5047 Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman

Authors: Surekha Tony, Roshan Mevada

Abstract:

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor.

Keywords: genetic diagnosis, hematopoietic stem cell transplant, infant, Wiskott-Aldrich syndrome

Procedia PDF Downloads 6
5046 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia

Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja

Abstract:

Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.

Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production

Procedia PDF Downloads 67
5045 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 178
5044 Neo-Adjuvant B-CAT Chemotherapy in Triple Negative Breast Cancer

Authors: Muneeb Nasir, Misbah Masood, Farrukh Rashid, Abubabakar Shahid

Abstract:

Introduction: Neo-adjuvant chemotherapy is a potent option for triple negative breast cancer (TNBC) as these tumours lack a clearly defined therapeutic target. Several recent studies lend support that pathological complete remission (pCR) is associated with improved disease free survival (DFS) and overall survival (OS) and could be used as surrogate marker for DFS and OS in breast cancer patients. Methods: We have used a four-drug protocol in T3 and T4 TNBC patients either N+ or N- in the neo-adjuvant setting. The 15 patients enrolled in this study had a median age of 45 years. 12 patients went on to complete four planned cycles of B-CAT protocol. The chemotherapy regimen included inj. Bevacizumab 5mg/kg D1, inj. Adriamycin 50mg/m2 D1 and Docetaxel 65mg/m2 on D1. Inj. Cisplatin 60mg/m2 on D2. All patients received GCF support from D4 to D9 of each cycle. Results: Radiological assessment using ultrasound and PET-CT revealed a high percentage of responses. Radiological CR was documented in half of the patients (6/12) after four cycles. Remaining patients went on to receive 2 more cycles before undergoing radical surgery. pCR was documented in 7/12 patients and 3 more had a good partial response. The regimen was toxic and grade ¾ neutropenia was seen in 58% of patients. Four episodes of febrile neutropenia were reported and managed. Non-hematatological toxicities were common with mucositis, diarrhea, asthenia and neuropathy topping the list. Conclusion: B-CAT is a very active combination with very high pCR rates in TNBC. Toxicities though frequent, were manageable on outpatient basis. This protocol warrants further investigation.

Keywords: B-CAT:bevacizumab, cisplatin, adriamycin, taxotere, CR: complete response, pCR: pathological complete response, TNBC: triple negative breast cancer

Procedia PDF Downloads 256
5043 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 299
5042 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 110
5041 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 453
5040 Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations

Authors: Abdelhammid Chibane

Abstract:

Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback.

Keywords: buildings, concentration stresses, ductility, ductility, designs, irregular structures

Procedia PDF Downloads 258
5039 Third Super-Harmonic Resonance in Vortex-Induced Vibration of a Pipeline Close to the Seabed

Authors: Yiming Jin, Ping Dong

Abstract:

The third super-harmonic resonance of a pipeline close to the seabed is investigated in this paper. To analyse the vortex-induced vibration (VIV) of the pipeline close to the seabed, the classic Van der Pol equation is extended with a nonlinear item. Then, on the base of the multi-scale method, the frequency-response curves of the pipeline with regard to the third super-harmonic resonance are studied with a series of parameters, such as the mass ratio, frequency, damp ratio and gap ratio. On the whole, the numerical results show that the characters of third super-harmonic resonance are quite from that of primary resonance, though with the same trend that the larger is the mass ratio, the smaller impact the gap ratio has on the frequency-response curves of the third super-harmonic resonance.

Keywords: the third super-harmonic resonance, gap ratio, vortex-induced vibration, multi-scale method

Procedia PDF Downloads 427
5038 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 429
5037 In vitro Study of Inflammatory Gene Expression Suppression of Strawberry and Blackberry Extracts

Authors: Franco Van De Velde, Debora Esposito, Maria E. Pirovani, Mary A. Lila

Abstract:

The physiology of various inflammatory diseases is a complex process mediated by inflammatory and immune cells such as macrophages and monocytes. Chronic inflammation, as observed in many cardiovascular and autoimmune disorders, occurs when the low-grade inflammatory response fails to resolve with time. Because of the complexity of the chronic inflammatory disease, major efforts have focused on identifying novel anti-inflammatory agents and dietary regimes that prevent the pro-inflammatory process at the early stage of gene expression of key pro-inflammatory mediators and cytokines. The ability of the extracts of three blackberry cultivars (‘Jumbo’, ‘Black Satin’ and ‘Dirksen’), and one strawberry cultivar (‘Camarosa’) to inhibit four well-known genetic biomarkers of inflammation: inducible nitric oxide synthase (iNOS), cyclooxynase-2 (Cox-2), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in an in vitro lipopolysaccharide-stimulated murine RAW 264.7 macrophage model were investigated. Moreover, the effect of latter extracts on the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production was assessed. Assay was conducted with 50 µg/mL crude extract concentration, an amount that is easily achievable in the gastrointestinal tract after berries consumption. The mRNA expression levels of Cox-2 and IL-6 were reduced consistently (more than 30%) by extracts of ‘Jumbo’ and ‘Black Satin’ blackberries. Strawberry extracts showed high reduction in mRNA expression levels of IL-6 (more than 65%) and exhibited moderate reduction in mRNA expression of Cox-2 (more than 35%). The latter behavior mirrors the intracellular ROS production of the LPS stimulated RAW 264.7 macrophages after the treatment with blackberry ‘Black Satin’ and ‘Jumbo’, and strawberry ‘Camarosa’ extracts, suggesting that phytochemicals from these fruits may play a role in the health maintenance by reducing oxidative stress. On the other hand, effective inhibition in the gene expression of IL-1β and iNOS was not observed by any of blackberry and strawberry extracts. However, suppression in the NO production in the activated macrophages among 5–25% was observed by ‘Jumbo’ and ‘Black Satin’ blackberry extracts and ‘Camarosa’ strawberry extracts, suggesting a higher NO suppression property by phytochemicals of these fruits. All these results suggest the potential beneficial effects of studied berries as functional foods with antioxidant and anti-inflammatory roles. Moreover, the underlying role of phytochemicals from these fruits in the protection of inflammatory process will deserve to be further explored.

Keywords: cyclooxygenase-2, functional foods, interleukin-6, reactive oxygen species

Procedia PDF Downloads 231
5036 Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics

Authors: Cherifi Katia, Al-Hawat Marie-Lynn, Tricou Leo-Paul, Lamontagne Stephanie, Tran Minh, Ngu Amy Ching Yie, Manrique Gabriela, Guirguis Natalie, Machuca Parra Arturo Israel, Matoori Simon

Abstract:

Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs.

Keywords: wound ph, fluorescence, diagnostics, diabetic foot ulcer, wound healing, chronic wounds, diabetes

Procedia PDF Downloads 82
5035 Systematic Literature Review of Therapeutic Use of Autonomous Sensory Meridian Response (ASMR) and Short-Term ASMR Auditory Training Trial

Authors: Christine H. Cubelo

Abstract:

This study consists of 2-parts: a systematic review of current publications on the therapeutic use of autonomous sensory meridian response (ASMR) and a within-subjects auditory training trial using ASMR videos. The main intent is to explore ASMR as potentially therapeutically beneficial for those with atypical sensory processing. Many hearing-related disorders and mood or anxiety symptoms overlap with symptoms of sensory processing issues. For this reason, inclusion and exclusion criteria of the systematic review were generated in an effort to produce optimal search outcomes and avoid overly confined criteria that would limit yielded results. Criteria for inclusion in the review for Part 1 are (1) adult participants diagnosed with hearing loss or atypical sensory processing, (2) inclusion of measures related to ASMR as a treatment method, and (3) published between 2000 and 2022. A total of 1,088 publications were found in the preliminary search, and a total of 13 articles met the inclusion criteria. A total of 14 participants completed the trial and post-trial questionnaire. Of all responses, 64.29% agreed that the duration of auditory training sessions was reasonable. In addition, 71.43% agreed that the training improved their perception of music. Lastly, 64.29% agreed that the training improved their perception of a primary talker when there are other talkers or background noises present.

Keywords: autonomous sensory meridian response, auditory training, atypical sensory processing, hearing loss, hearing aids

Procedia PDF Downloads 54
5034 Case Study Hyperbaric Oxygen Therapy for Idiopathic Sudden Sensorineural Hearing Loss

Authors: Magdy I. A. Alshourbagi

Abstract:

Background: The National Institute for Deafness and Communication Disorders defines idiopathic sudden sensorineural hearing loss as the idiopathic loss of hearing of at least 30 dB across 3 contiguous frequencies occurring within 3 days.The most common clinical presentation involves an individual experiencing a sudden unilateral hearing loss, tinnitus, a sensation of aural fullness and vertigo. The etiologies and pathologies of ISSNHL remain unclear. Several pathophysiological mechanisms have been described including: vascular occlusion, viral infections, labyrinthine membrane breaks, immune associated disease, abnormal cochlear stress response, trauma, abnormal tissue growth, toxins, ototoxic drugs and cochlear membrane damage. The rationale for the use of hyperbaric oxygen to treat ISSHL is supported by an understanding of the high metabolism and paucity of vascularity to the cochlea. The cochlea and the structures within it require a high oxygen supply. The direct vascular supply, particularly to the organ of Corti, is minimal. Tissue oxygenation to the structures within the cochlea occurs via oxygen diffusion from cochlear capillary networks into the perilymph and the cortilymph. . The perilymph is the primary oxygen source for these intracochlear structures. Unfortunately, perilymph oxygen tension is decreased significantly in patients with ISSHL. To achieve a consistent rise of perilymph oxygen content, the arterial-perilymphatic oxygen concentration difference must be extremely high. This can be restored with hyperbaric oxygen therapy. Subject and Methods: A 37 year old man was presented at the clinic with a five days history of muffled hearing and tinnitus of the right ear. Symptoms were sudden onset, with no associated pain, dizziness or otorrhea and no past history of hearing problems or medical illness. Family history was negative. Physical examination was normal. Otologic examination revealed normal tympanic membranes bilaterally, with no evidence of cerumen or middle ear effusion. Tuning fork examination showed positive Rinne test bilaterally but with lateralization of Weber test to the left side, indicating right ear sensorineural hearing loss. Audiometric analysis confirmed sensorineural hearing loss across all frequencies of about 70- dB in the right ear. Routine lab work were all within normal limits. Clinical diagnosis of idiopathic sudden sensorineural hearing loss of the right ear was made and the patient began a medical treatment (corticosteroid, vasodilator and HBO therapy). The recommended treatment profile consists of 100% O2 at 2.5 atmospheres absolute for 60 minutes daily (six days per week) for 40 treatments .The optimal number of HBOT treatments will vary, depending on the severity and duration of symptomatology and the response to treatment. Results: As HBOT is not yet a standard for idiopathic sudden sensorineural hearing loss, it was introduced to this patient as an adjuvant therapy. The HBOT program was scheduled for 40 sessions, we used a 12-seat multi place chamber for the HBOT, which was started at day seven after the hearing loss onset. After the tenth session of HBOT, improvement of both hearing (by audiogram) and tinnitus was obtained in the affected ear (right). Conclusions: In conclusion, HBOT may be used for idiopathic sudden sensorineural hearing loss as an adjuvant therapy. It may promote oxygenation to the inner ear apparatus and revive hearing ability. Patients who fail to respond to oral and intratympanic steroids may benefit from this treatment. Further investigation is warranted, including animal studies to understand the molecular and histopathological aspects of HBOT and randomized control clinical studies.

Keywords: idiopathic sudden sensorineural hearing loss (issnhl), hyperbaric oxygen therapy (hbot), the decibel (db), oxygen (o2)

Procedia PDF Downloads 430
5033 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 211
5032 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.

Authors: Sulemana Saibu, Moses Ikpeme

Abstract:

Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.

Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases

Procedia PDF Downloads 81
5031 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software

Authors: Pasala Gopi, P. Linga Reddy

Abstract:

The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations

Keywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system

Procedia PDF Downloads 640