Search results for: third order ordinary differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16179

Search results for: third order ordinary differential equations

14889 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors

Authors: Jing Yuan, Hongwei Yang

Abstract:

This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.

Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel

Procedia PDF Downloads 315
14888 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity

Procedia PDF Downloads 260
14887 CFD Prediction of the Round Elbow Fitting Loss Coefficient

Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli

Abstract:

Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.

Keywords: duct fitting, pressure loss, elbow, thermodynamics

Procedia PDF Downloads 376
14886 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application

Authors: M. Kaouane, A. Boukhelifa, A. Cheriti

Abstract:

In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.

Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer

Procedia PDF Downloads 883
14885 Cold Crystallization of Poly (Ether Ether Ketone)/Graphene Composites by Time-Resolved Synchrotron X-Ray Diffraction

Authors: A. Alvaredo , R. Guzman De Villoria, P. Castell, Juan P. Fernandez-Blazquez

Abstract:

Since graphene was discovered in 2004, has been considered as superb material, due to its outstanding mechanical, electrical and thermal properties. Graphene has been incorporated as reinforcement in several high performance polymers in order to obtain a good balance of properties and to get new properties as thermal or electric conductivity. As well known, the properties of semicrystalline polymer and its composites depends heavily on degree of crystallinity. In this context, our research group has studied the crystallization behavior from amorphous state of PEEK/GNP composites. The monitoring of cold crystallization processes studied by time-resolved simultaneous wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). These techniques allowed to get an extremely relevant information about the evolution of the morphology of the PEEK/GNP composites. In addition, the thermal evolution of cold crystallization was followed by differential scanning calorimetry (DSC) as well. The experimental results showed changes in crystallization kinetics and c parameter unit cell when adding graphene. The main aim of this work is to produce PEEK/GNP composites and characterize their morphology, unit cell parameters and crystallization kinetic.

Keywords: PEEK, graphene, synchrotron, cold crystallization

Procedia PDF Downloads 334
14884 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature

Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy

Abstract:

Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.

Keywords: fly ash, geopolymer, potassium silicate, slag

Procedia PDF Downloads 206
14883 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS

Authors: Eunsu Jang, Kang Park

Abstract:

In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.

Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis

Procedia PDF Downloads 378
14882 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)

Authors: C. C. Chima, C. J. M. Anumaka

Abstract:

This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.

Keywords: earnings per share, environmental disclosures, return on assets, return on equity

Procedia PDF Downloads 69
14881 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features

Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang

Abstract:

This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.

Keywords: entropy generation, exothermicity or endothermicity, forced convection, local thermal non-equilibrium, analytical modelling

Procedia PDF Downloads 398
14880 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity

Authors: Tania Sharmin Khaleque, Mohammad Ferdows

Abstract:

The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.

Keywords: free convection, heat generation, thermal diffusivity, variable viscosity

Procedia PDF Downloads 334
14879 Linear MIMO Model Identification Using an Extended Kalman Filter

Authors: Matthew C. Best

Abstract:

Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.

Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction

Procedia PDF Downloads 577
14878 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.

Keywords: multi-criteria decision making, AHP, SAW, TOPSIS

Procedia PDF Downloads 93
14877 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco Tulio C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method

Procedia PDF Downloads 435
14876 Understanding the Influence of Fibre Meander on the Tensile Properties of Advanced Composite Laminates

Authors: Gaoyang Meng, Philip Harrison

Abstract:

When manufacturing composite laminates, the fibre directions within the laminate are never perfectly straight and inevitably contain some degree of stochastic in-plane waviness or ‘meandering’. In this work we aim to understand the relationship between the degree of meandering of the fibre paths, and the resulting uncertainty in the laminate’s final mechanical properties. To do this, a numerical tool is developed to automatically generate meandering fibre paths in each of the laminate's 8 plies (using Matlab) and after mapping this information into finite element simulations (using Abaqus), the statistical variability of the tensile mechanical properties of a [45°/90°/-45°/0°]s carbon/epoxy (IM7/8552) laminate is predicted. The stiffness, first ply failure strength and ultimate failure strength are obtained. Results are generated by inputting the degree of variability in the fibre paths and the laminate is then examined in all directions (from 0° to 359° in increments of 1°). The resulting predictions are output as flower (polar) plots for convenient analysis. The average fibre orientation of each ply in a given laminate is determined by the laminate layup code [45°/90°/-45°/0°]s. However, in each case, the plies contain increasingly large amounts of in-plane waviness (quantified by the standard deviation of the fibre direction in each ply across the laminate. Four different amounts of variability in the fibre direction are tested (2°, 4°, 6° and 8°). Results show that both the average tensile stiffness and the average tensile strength decrease, while the standard deviations increase, with an increasing degree of fibre meander. The variability in stiffness is found to be relatively insensitive to the rotation angle, but the variability in strength is sensitive. Specifically, the uncertainty in laminate strength is relatively low at orientations centred around multiples of 45° rotation angle, and relatively high between these rotation angles. To concisely represent all the information contained in the various polar plots, rotation-angle dependent Weibull distribution equations are fitted to the data. The resulting equations can be used to quickly estimate the size of the errors bars for the different mechanical properties, resulting from the amount of fibre directional variability contained within the laminate. A longer term goal is to use these equations to quickly introduce realistic variability at the component level.

Keywords: advanced composite laminates, FE simulation, in-plane waviness, tensile properties, uncertainty quantification

Procedia PDF Downloads 71
14875 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease

Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 98
14874 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma

Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam

Abstract:

Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.

Keywords: systems biology, ependymoma, deg, network analysis

Procedia PDF Downloads 282
14873 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 375
14872 The Importance of Clinicopathological Features for Differentiation Between Crohn's Disease and Ulcerative Colitis

Authors: Ghada E. Esheba, Ghadeer F. Alharthi, Duaa A. Alhejaili, Rawan E. Hudairy, Wafaa A. Altaezi, Raghad M. Alhejaili

Abstract:

Background: Inflammatory bowel disease (IBD) consists of two specific gastrointestinal disorders: ulcerative colitis (UC) and Crohn's disease (CD). Despite their distinct natures, these two diseases share many similar etiologic, clinical and pathological features, as a result, their accurate differential diagnosis may sometimes be difficult. Correct diagnosis is important because surgical treatment and long-term prognosis differ from UC and CD. Aim: This study aims to study the characteristic clinicopathological features which help in the differential diagnosis between UC and CD, and assess the disease activity in ulcerative colitis. Materials and methods: This study was carried out on 50 selected cases. The cases included 27 cases of UC and 23 cases of CD. All the cases were examined using H& E and immunohistochemically for bcl-2 expression. Results: Characteristic features of UC include: decrease in mucous content, irregular or villous surface, crypt distortion, and cryptitis, whereas the main cardinal histopathological features seen in CD were: epitheloid granuloma, transmural chronic inflammation, absence of mucin depletion, irregular surface, or crypt distortion. 3 cases of UC were found to be associated with dysplasia. UC mucosa contains fewer Bcl-2+ cells compared with CD mucosa. Conclusion: This study using multiple parameters such clinicopathological features and Bcl-2 expression as studied by immunohistochemical stain, helped to gain an accurate differentiation between UC and CD. Furthermore, this work spotted the light on the activity and different grades of UC which could be important for the prediction of relapse.

Keywords: Crohn's disease, dysplasia, inflammatory bowel disease, ulcerative colitis

Procedia PDF Downloads 175
14871 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery

Procedia PDF Downloads 185
14870 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 259
14869 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria

Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji

Abstract:

The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.

Keywords: credit utilisation, logit model, microfinance, small and medium enterprises

Procedia PDF Downloads 189
14868 Capitalizing on Differential Network Ties: Unpacking Individual Creativity from Social Capital Perspective

Authors: Yuanyuan Wang, Chun Hui

Abstract:

Drawing on social capital theory, this article discusses how individuals may utilize network ties to come up with creativity. Social capital theory elaborates how network ties enhances individual creativity from three dimensions: structural access, and relational and cognitive mechanisms. We categorize network ties into strong and weak in terms of tie strength. With less structural constraints, weak ties allow diverse and heterogeneous knowledge to prosper, further facilitating individuals to build up connections among diverse even distant ideas. On the other hand, strong ties with the relational mechanism of cooperation and trust may benefit the accumulation of psychological capital, ultimately to motivate and sustain creativity. We suggest that differential ties play different roles for individual creativity: Weak ties deliver informational benefit directly rifling individual creativity from informational resource aspect; strong ties offer solidarity benefits to reinforce psychological capital, which further inspires individual creativity engagement from a psychological viewpoint. Social capital embedded in network ties influence individuals’ informational acquisition, motivation, as well as cognitive ability to be creative. Besides, we also consider the moderating effects constraining the relatedness between network ties and creativity, such as knowledge articulability. We hypothesize that when the extent of knowledge articulability is low, that is, with low knowledge codifiability, and high dependency and ambiguity, weak ties previous serving as knowledge reservoir will not become ineffective on individual creativity. Two-wave survey will be employed in Mainland China to empirically test mentioned propositions.

Keywords: network ties, social capital, psychological capital, knowledge articulability, individual creativity

Procedia PDF Downloads 389
14867 Differential Impact of Parenting on Mental Health Functioning of Pakistani Adolescents: A Cultural Perspective

Authors: Zahid Mahmood

Abstract:

Mental health problems in adolescents are said to be increasing tremendously, and a large proportion of adolescents are suffering from serious mental health problems that result in short and long term socio-emotional negative consequences. Contemporary clinical and school psychology is now focused on prevention rather than intervene in the mental health concerns of adolescents. Therefore, a wealth of literature is devoted to identify the risk and protective factors so that adolescents may be prevented and identified earlier. This quest has led to identify many risk factors including the early parent-child relationship. Parenting has a long last impact on the growth and development of an individual. If the parent-child relationship is secure and warm, the child tends to have a positive psychological outcome. On the other hand, if parenting is rejecting and distant, it may lead to more mental health problems. Keeping in view the cross-cultural influence of parenting, the current study was aimed to explore the relationship between parental rearing practices and mental health problems on a group of Pakistani adolescents. A sample of 805 participants (49% boys and 51% girls) were selected through a stratified sample with the age range of 13-18 years. All the participants were given protocol of EMBU-C and School Children Problem Scale (SCPS). Results indicate that age, the gender of the participant and parental rejection were found to be a significant positive predictor of mental health problems in adolescents. It can be concluded that parenting may be a universal phenomenon comprising rejection and acceptance yet the differential impact on mental health varies from culture to culture.

Keywords: parenting, mental health, adolescents, cross cultural

Procedia PDF Downloads 108
14866 Solid Dispersions of Cefixime Using β-Cyclodextrin: Characterization and in vitro Evaluation

Authors: Nagasamy Venkatesh Dhandapani, Amged Awad El-Gied

Abstract:

Cefixime, a BCS class II drug, is insoluble in water but freely soluble in acetone and in alcohol. The aqueous solubility of cefixime in water is poor and exhibits exceptionally slow and intrinsic dissolution rate. In the present study, cefixime and β-Cyclodextrin (β-CD) solid dispersions were prepared with a view to study the effect and influence of β-CD on the solubility and dissolution rate of this poorly aqueous soluble drug. Phase solubility profile revealed that the solubility of cefixime was increased in the presence of β-CD and was classified as AL-type. Effect of variable, such as drug:carrier ratio, was studied. Physical characterization of the solid dispersion was characterized by Fourier transform infrared spectroscopy (FT-IR) and Differential scanning calorimetry (DSC). These studies revealed that a distinct loss of drug crystallinity in the solid molecular dispersions is ostensibly accounting for enhancement of dissolution rate in distilled water. The drug release from the prepared solid dispersion exhibited a first order kinetics. Solid dispersions of cefixime showed a 6.77 times fold increase in dissolution rate over the pure drug.

Keywords: β-cyclodextrin, cefixime, dissolution, Kneading method, solid dispersions, release kinetics

Procedia PDF Downloads 297
14865 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 284
14864 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 120
14863 Determining the Efficacy of Phenol, Sodium Hypochlorite and Ethanol for Inactivation of Carbapenem-Resistant Strain of Acinetobacter baumannii

Authors: Deepika Biswas

Abstract:

Acinetobacter baumannii, a hospital-acquired pathogen, causes nosocomial infections including pneumonia, urinary tract infection, and secondary meningitis. Carbapenem is most effective antibiotics against it. Its increased resistance to carbapenems has been a rising global concern. Antibiotics such as carbapenem are unable to use on hospital setups to eradicate A. baumannii, hence different concentrations of disinfectants including phenol; sodium hypochlorite and ethanol are increasingly being used. The objective of the present study is to find an effective concentration of above disinfectants against carbapenem-resistant strain RS307 of A. baumannii. Growth kinetics of RS307 has been determined using UV-Vis spectrophotometer in the presence and absence of disinfectants in triplicate and its standard deviation has also been calculated which make the results more reliable. Differential growth curves were plotted, which showed the effective concentration among all the concentrations of phenol, sodium hypochlorite and ethanol. On disc diffusion assay, antimicrobial effect was observed by comparing all the concentrations of disinfectants to check its synergy with imipenem, most effective carbapenem. All the results collectively revealed that 0.5% phenol, 0.5% sodium hypochlorite, and 70% ethanol could preferably be used as disinfectant for hospital setup against the carbapenem-resistant strain of A. baumannii. SDS PAGE analysis showed differential expression in the protein profile of A. baumannii after treatment. The present study highlighted that few disinfectants even in low concentration had shown better antimicrobial activity hence may be recommended for regular use in the hospitals, which will be cost effective and less harmful.

Keywords: Acenatobacter bomunii, phenol, sodium hypoclirite, ethanol, carbapenem resistance, disinfectant

Procedia PDF Downloads 241
14862 Beyond Voluntary Corporate Social Responsibility: Examining the Impact of the New Mandatory Community Development Agreement in the Mining Sector of Sierra Leone

Authors: Wusu Conteh

Abstract:

Since the 1990s, neo-liberalization has become a global agenda. The free market ushered in an unprecedented drive by Multinational Corporations (MNCs) to secure mineral rights in resource-rich countries. Several governments in the Global South implemented a liberalized mining policy with support from the International Financial Institutions (IFIs). MNCs have maintained that voluntary Corporate Social Responsibility (CSR) has engendered socio-economic development in mining-affected communities. However, most resource-rich countries are struggling to transform the resources into sustainable socio-economic development. They are trapped in what has been widely described as the ‘resource curse.’ In an attempt to address this resource conundrum, the African Mining Vision (AMV) of 2009 developed a model on resource governance. The advent of the AMV has engendered the introduction of mandatory community development agreement (CDA) into the legal framework of many countries in Africa. In 2009, Sierra Leone enacted the Mines and Minerals Act that obligates mining companies to invest in Primary Host Communities. The study employs interviews and field observation techniques to explicate the dynamics of the CDA program. A total of 25 respondents -government officials, NGOs/CSOs and community stakeholders were interviewed. The study focuses on a case study of the Sierra Rutile CDA program in Sierra Leone. Extant scholarly works have extensively explored the resource curse and voluntary CSR. There are limited studies to uncover the mandatory CDA and its impact on socio-economic development in mining-affected communities. Thus, the purpose of this study is to explicate the impact of the CDA in Sierra Leone. Using the theory of change helps to understand how the availability of mandatory funds can empower communities to take an active part in decision making related to the development of the communities. The results show that the CDA has engendered a predictable fund for community development. It has also empowered ordinary members of the community to determine the development program. However, the CDA has created a new ground for contestations between the pre-existing local governance structure (traditional authority) and the newly created community development committee (CDC) that is headed by an ordinary member of the community.

Keywords: community development agreement, impact, mandatory, participation

Procedia PDF Downloads 101
14861 Assessment of Golestan Dam Break Using Finite Volume Method

Authors: Ebrahim Alamatian, Seyed Mehdi Afzalnia

Abstract:

One of the most vital hydraulic structures is the dam. Regarding the unrecoverable damages which may occur after a dam break phenomenon, analyzing dams’ break is absolutely essential. GOLESTAN dam is located in the western South of Mashhad city in Iran. GOLESTAN dam break might lead to severe problems due to adjacent tourist and entertainment areas. In this paper, a numerical code based on the finite volume method was applied for assessing the risk of GOLESTAN dam break. As to this issue, first, a canal with a triangular barrier was modeled so as to verify the capability of the concerned code. Comparing analytical, experimental and numerical results showed that water level in the model results is in a good agreement with the similar water level in the analytical solutions and experimental data. The results of dam break modeling are revealed that two of the bridges, that are PARTOIE and NAMAYESHGAH, located downstream in the flow direction, are at risk following the potential GOLESTAN dam break. Therefore, the required times to conduct the precautionary measures at bridges were calculated at about 12 and 21 minutes, respectively. Thus, it is crucial to announce people about the possible risks of the dam break in order to decrease likely losses.

Keywords: numerical model, shallow water equations, GOLESTAN dam break, dry and wet beds modeling

Procedia PDF Downloads 134
14860 Vortex-Induced Vibrations of Two Cylinders in Close Proximity

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

The phenomenon of vortex-induced vibration has applications in off-shore industry, power transmission, energy extraction, etc. Two cylinders in crossflow whose centers are displaced in transverse direction are considered in the present work. The effects of the gap distance between the cylinders on the vortex shedding are presented. The inline distance between the cylinder centers is kept at zero. Two setups are considered for the study: first, we assume the two cylinders vibrate as a single rigid body mounted on a spring, and in the other case, each cylinder is mounted on a separate spring with no rigid connection to the other cylinder. The study focuses on the effect of transverse gap on the fluid-structure coupled response of two setups mentioned and corresponding flow contours. Incompressible flow is assumed in the Eulerian framework. The cylinder movement is modeled by a single degree of freedom rigid body motion (translational motion) in the Lagrangian framework. The governing equations were numerically solved by standard Petrov-Galerkin second order finite element schemes.

Keywords: cross-flow, vortex-induced vibrations, cylinder, close proximity

Procedia PDF Downloads 479