Search results for: shared frailty survival models
7388 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer
Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik
Abstract:
Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.Keywords: cancer, PET/CT, staging, surgery
Procedia PDF Downloads 2477387 Developing a Shared Understanding of Wellbeing: An Exploratory Study in Irish Primary Schools Incorporating the Voices of Teachers
Authors: Fionnuala Tynan, Margaret Nohilly
Abstract:
Wellbeing in not only a national priority in Ireland but in the international context. A review of the literature highlights the consistent efforts of researchers to define the concept of wellbeing. This study sought to explore the understating of Wellbeing in Irish primary schools. National Wellbeing Guidelines in the Irish context frame the concept of wellbeing through a mental health paradigm, which is but one aspect of wellbeing. This exploratory research sought the views of Irish primary-school teachers on their understanding of the concept of wellbeing and the practical application of strategies to promote wellbeing both in the classroom and across the school. Teacher participants from four counties in the West of Ireland were invited to participate in focus group discussion and workshops through the Education Centre Network. The purpose of this process was twofold; firstly to explore teachers’ understanding of wellbeing in the primary school context and, secondly, for teachers to be co-creators in the development of practical strategies for classroom and whole school implementation. The voice of the teacher participants was central to the research design. The findings of this study indicate that the definition of wellbeing in the Irish context is too abstract a definition for teachers and the focus on mental health dominates the discourse in relation to wellbeing. Few teachers felt that they were addressing wellbeing adequately in their classrooms and across the school. The findings from the focus groups highlighted that while teachers are incorporating a range of wellbeing strategies including mindfulness and positive psychology, there is a clear disconnect between the national definition and the implementation of national curricula which causes them concern. The teacher participants requested further practical strategies to promote wellbeing at whole school and classroom level within the framework of the Irish Primary School Curriculum and enable them to become professionally confident in developing a culture of wellbeing. In conclusion, considering wellbeing is a national priority in Ireland, this research promoted the timely discussion the wellbeing guidelines and the development of a conceptual framework to define wellbeing in concrete terms for practitioners. The centrality of teacher voices ensured the strategies proposed by this research is both practical and effective. The findings of this research have prompted the development of a national resource which will support the implementation of wellbeing in the primary school at both national and international level.Keywords: primary education, shared understanding, teacher voice, wellbeing
Procedia PDF Downloads 4577386 Evaluating the Efficacy of Tasquinimod in Covid-19
Authors: Raphael Udeh, Luis García De Guadiana Romualdo, Xenia Dolje-Gore
Abstract:
Background: Quite disturbing is the huge public health impact of COVID-19: As at today [25th March 2021, the COVID-19 global burden shows over 123 million cases and over 2.7 million deaths worldwide. Rationale: Recent evidence shows calprotectin’s potential as a therapeutic target, stating that tasquinimod, from the Quinoline-3-Carboxamide family is capable of blocking the interaction between calprotectin and TLR4. Hence preventing the cytokine release syndrome, that heralds the functional exhaustion in COVID-19. Early preclinical studies showed that tasquinimod inhibit tumor growth and prevent angiogenesis/cytokine storm. Phase I – III clinical studies in prostate cancer showed it has a good safety profile with good radiologic progression free survival but no effect on overall survival. Rationale/hypothesis: Strategic endeavors have been amplified globally to assess new therapeutic interventions for COVID-19 management – thus the clinical and antiviral efficacy of tasquinimod in COVID-19 remains to be explored. Hence the primary objective of this trial will be to evaluate the efficacy of tasquinimod in the treatment of adult patients with severe COVID-19 infections. Therefore, I hypothesise that among adults with COVID19 infection, tasquinimod will reduce the severe respiratory distress associated with COVID-19 compared to placebo, over a 28-day study period. Method: The setting is in Europe. Design – a randomized, placebo-controlled, phase II double-blinded trial. Trial lasts for 28 days from randomization, Tasquinimod capsule given as 0.5mg daily 1st fortnight, then 1mg daily 2nd fortnight. I0 outcome - assessed using six-point ordinal scale alongside eight 20 outcomes. 125 participants to be enrolled, data collection at baseline and subsequent data points, and safety reporting monitored via serological profile. Significance: This work could potentially establish tasquinimod as an effective and safe therapeutic agent for COVID-19 by reducing the severe respiratory distress, related time to recovery, time on oxygen/admission. It will also drive future research – as in larger multi-centre RCT.Keywords: Calprotectin, COVID-19, Phase II Trial, Tasquinimod
Procedia PDF Downloads 1957385 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 957384 Theoretical Reflections on Metaphor and Cohesion and the Coherence of Face-To-Face Interactions
Authors: Afef Badri
Abstract:
The role of metaphor in creating the coherence and the cohesion of discourse in online interactive talk has almost received no attention. This paper intends to provide some theoretical reflections on metaphorical coherence as a jointly constructed process that evolves in online, face-to-face interactions. It suggests that the presence of a global conceptual structure in a conversation makes it conceptually cohesive. Yet, coherence remains a process largely determined by other variables (shared goals, communicative intentions, and framework of understanding). Metaphorical coherence created by these variables can be useful in detecting bias in media reporting.Keywords: coherence, cohesion, face-to-face interactions, metaphor
Procedia PDF Downloads 2477383 Hidden Markov Movement Modelling with Irregular Data
Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith
Abstract:
Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator
Procedia PDF Downloads 2447382 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater
Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel
Abstract:
Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration
Procedia PDF Downloads 3897381 Non-Canonical Beclin-1-Independent Autophagy and Apoptosis in Cell Death Induced by Rhus coriaria in Human Colon HT-29 Cancer Cells
Authors: Rabah Iratni, Husain El Hasasna, Khawlah Athamneh, Halima Al Sameri, Nehla Benhalilou, Asma Al Rashedi
Abstract:
Background: Cancer therapies have witnessed great advances in the recent past, however, cancer continues to be a leading cause of death, with colorectal cancer being the fourth cause of cancer-related deaths. Colorectal cancer affects both sexes equally with poor survival rate once it metastasizes. Phytochemicals, which are plant derived compounds, have been on a steady rise as anti-cancer drugs due to the accumulation of evidences that support their potential. Here, we investigated the anticancer effect of Rhus coriaria on colon cancer cells. Material and Method: Human colon cancer HT-29 cell line was used. Protein expression and protein phosphorylation were examined using Western blotting. Transcription activity was measure using Quantitative RT-PCR. Human tumoral clonogenic assay was used to assess cell survival. Senescence was assessed by the senescence-associated beta-galactosidase assay. Results: Rhus coriaria extract (RCE) was found to significantly inhibit the viability and colony growth of human HT-29 colon cancer cells. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, p16, downregulation of cyclin D1, p27, c-myc and expression of Senescence-associated-β-Galactosidase activity. Moreover, RCE induced non-canonical beclin-1independent autophagy and subsequent apoptotic cell death through activation of activation caspase 8 and caspase 7. The blocking of autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death. Further, RCE induced DNA damage, reduced mutant p53 protein level and downregulated phospho-AKT and phospho-mTOR, events that preceded autophagy. Mechanistically, we found that RCE inhibited the AKT and mTOR pathway, a regulator of autophagy, by promoting the proteasome-dependent degradation of both AKT and mTOR proteins. Conclusion: Our findings provide strong evidence that Rhus coriaria possesses strong anti-colon cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against colon cancer.Keywords: autophagy, proteasome degradation, senescence, mTOR, apoptosis, Beclin-1
Procedia PDF Downloads 2627380 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 7437379 Towards a Standardization in Scheduling Models: Assessing the Variety of Homonyms
Authors: Marcel Rojahn, Edzard Weber, Norbert Gronau
Abstract:
Terminology is a critical instrument for each researcher. Different terminologies for the same research object may arise in different research communities. By this inconsistency, many synergistic effects get lost. Theories and models will be more understandable and reusable if a common terminology is applied. This paper examines the terminological (in) consistency for the research field of job-shop scheduling through a literature review. There is an enormous variety in the choice of terms and mathematical notation for the same concept. The comparability, reusability, and combinability of scheduling methods are unnecessarily hampered by the arbitrary use of homonyms and synonyms. The acceptance in the community of used variables and notation forms is shown by means of a compliance quotient. This is proven by the evaluation of 240 scientific publications on planning methods.Keywords: job-shop scheduling, terminology, notation, standardization
Procedia PDF Downloads 1097378 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method
Procedia PDF Downloads 3467377 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries
Authors: Behzad Babaei, B. Gangadhara Prusty
Abstract:
The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress
Procedia PDF Downloads 1017376 An Application of Graph Theory to The Electrical Circuit Using Matrix Method
Authors: Samai'la Abdullahi
Abstract:
A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table
Procedia PDF Downloads 5617375 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5727374 Gene Expression Meta-Analysis of Potential Shared and Unique Pathways Between Autoimmune Diseases Under anti-TNFα Therapy
Authors: Charalabos Antonatos, Mariza Panoutsopoulou, Georgios K. Georgakilas, Evangelos Evangelou, Yiannis Vasilopoulos
Abstract:
The extended tissue damage and severe clinical outcomes of autoimmune diseases, accompanied by the high annual costs to the overall health care system, highlight the need for an efficient therapy. Increasing knowledge over the pathophysiology of specific chronic inflammatory diseases, namely Psoriasis (PsO), Inflammatory Bowel Diseases (IBD) consisting of Crohn’s disease (CD) and Ulcerative colitis (UC), and Rheumatoid Arthritis (RA), has provided insights into the underlying mechanisms that lead to the maintenance of the inflammation, such as Tumor Necrosis Factor alpha (TNF-α). Hence, the anti-TNFα biological agents pose as an ideal therapeutic approach. Despite the efficacy of anti-TNFα agents, several clinical trials have shown that 20-40% of patients do not respond to treatment. Nowadays, high-throughput technologies have been recruited in order to elucidate the complex interactions in multifactorial phenotypes, with the most ubiquitous ones referring to transcriptome quantification analyses. In this context, a random effects meta-analysis of available gene expression cDNA microarray datasets was performed between responders and non-responders to anti-TNFα therapy in patients with IBD, PsO, and RA. Publicly available datasets were systematically searched from inception to 10th of November 2020 and selected for further analysis if they assessed the response to anti-TNFα therapy with clinical score indexes from inflamed biopsies. Specifically, 4 IBD (79 responders/72 non-responders), 3 PsO (40 responders/11 non-responders) and 2 RA (16 responders/6 non-responders) datasetswere selected. After the separate pre-processing of each dataset, 4 separate meta-analyses were conducted; three disease-specific and a single combined meta-analysis on the disease-specific results. The MetaVolcano R package (v.1.8.0) was utilized for a random-effects meta-analysis through theRestricted Maximum Likelihood (RELM) method. The top 1% of the most consistently perturbed genes in the included datasets was highlighted through the TopConfects approach while maintaining a 5% False Discovery Rate (FDR). Genes were considered as Differentialy Expressed (DEGs) as those with P ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of the included datasets. Over-representation analysis was performed using Gene Ontology and Reactome Pathways for both up- and down-regulated genes in all 4 performed meta-analyses. Protein-Protein interaction networks were also incorporated in the subsequentanalyses with STRING v11.5 and Cytoscape v3.9. Disease-specific meta-analyses detected multiple distinct pro-inflammatory and immune-related down-regulated genes for each disease, such asNFKBIA, IL36, and IRAK1, respectively. Pathway analyses revealed unique and shared pathways between each disease, such as Neutrophil Degranulation and Signaling by Interleukins. The combined meta-analysis unveiled 436 DEGs, 86 out of which were up- and 350 down-regulated, confirming the aforementioned shared pathways and genes, as well as uncovering genes that participate in anti-inflammatory pathways, namely IL-10 signaling. The identification of key biological pathways and regulatory elements is imperative for the accurate prediction of the patient’s response to biological drugs. Meta-analysis of such gene expression data could aid the challenging approach to unravel the complex interactions implicated in the response to anti-TNFα therapy in patients with PsO, IBD, and RA, as well as distinguish gene clusters and pathways that are altered through this heterogeneous phenotype.Keywords: anti-TNFα, autoimmune, meta-analysis, microarrays
Procedia PDF Downloads 1817373 Seismic Behavior of Suction Caisson Foundations
Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli
Abstract:
Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.Keywords: liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior
Procedia PDF Downloads 1197372 Satellite Connectivity for Sustainable Mobility
Authors: Roberta Mugellesi Dow
Abstract:
As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.Keywords: sustainability, connectivity, mobility, satellites
Procedia PDF Downloads 1337371 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education
Authors: Sereen Itani
Abstract:
As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges
Procedia PDF Downloads 3847370 Computer Simulation Studies of Aircraft Wing Architectures on Vibration Responses
Authors: Shengyong Zhang, Mike Mikulich
Abstract:
Vibration is a crucial limiting consideration in the analysis and design of airplane wing structures to avoid disastrous failures due to the propagation of existing cracks in the material. In this paper, we build CAD models of aircraft wings to capture the design intent with configurations. Subsequent FEA vibration analysis is performed to study the natural vibration properties and impulsive responses of the resulting user-defined wing models. This study reveals the variations of the wing’s vibration characteristics with respect to changes in its structural configurations. Integrating CAD modelling and FEA vibration analysis enables designers to improve wing architectures for implementing design requirements in the preliminary design stage.Keywords: aircraft wing, CAD modelling, FEA, vibration analysis
Procedia PDF Downloads 1657369 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity
Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink
Abstract:
The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction
Procedia PDF Downloads 3137368 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 507367 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School
Authors: Martín Pratto Burgos
Abstract:
The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.Keywords: machine-learning, engineering, university, education, computational models
Procedia PDF Downloads 947366 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology
Authors: Surajit Chattopadhyay
Abstract:
Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.Keywords: dark energy, holographic principle, modified gravity, reconstruction
Procedia PDF Downloads 4127365 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)
Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan
Abstract:
Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.Keywords: qorveh plain, groundwater level, ARMA, PARMA
Procedia PDF Downloads 2867364 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)
Authors: Jiraporn Rojtinnakorn
Abstract:
ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I trans-membrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish.Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor
Procedia PDF Downloads 2267363 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education
Authors: Raluca Ionela Maxim
Abstract:
Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.Keywords: design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models
Procedia PDF Downloads 1357362 Imperial/Royal Renewal in Byzantium and Medieval Georgia: Case of Alexios I Komnenos (r. 1081–1118) and Davit IV the Builder (r. 1089–1125)
Authors: Sandro Nikolaishvili
Abstract:
The end of the eleventh and the beginning of the twelfth century was a transitional period for the Byzantine empire as well as for the Caucasus. The empire was struggling for its survival under Alexios I Komnenos while Medieval Georgia was emerging as a dominant player in the Caucasus under Davit IV the Builder. The reigns of these two rulers were periods of renewal and transformation. I aim to compare the imperial image of Alexios I Komnenos with the renewed kingship ideology under Davit IV. I will hypothesize about the possible translation of the Byzantine political culture into the Medieval Georgia.Keywords: Byzantium, Georgia, imperial, image
Procedia PDF Downloads 4177361 Challenges and Lessons of Mentoring Processes for Novice Principals: An Exploratory Case Study of Induction Programs in Chile
Authors: Carolina Cuéllar, Paz González
Abstract:
Research has shown that school leadership has a significant indirect effect on students’ achievements. In Chile, evidence has also revealed that this impact is stronger in vulnerable schools. With the aim of strengthening school leadership, public policy has taken up the challenge of enhancing capabilities of novice principals through the implementation of induction programs, which include a mentoring component, entrusting the task of delivering these programs to universities. The importance of using mentoring or coaching models in the preparation of novice school leaders has been emphasized in the international literature. Thus, it can be affirmed that building leadership capacity through partnership is crucial to facilitate cognitive and affective support required in the initial phase of the principal career, gain role clarification and socialization in context, stimulate reflective leadership practice, among others. In Chile, mentoring is a recent phenomenon in the field of school leadership and it is even more new in the preparation of new principals who work in public schools. This study, funded by the Chilean Ministry of Education, sought to explore the challenges and lessons arising from the design and implementation of mentoring processes which are part of the induction programs, according to the perception of the different actors involved: ministerial agents, university coordinators, mentors and novice principals. The investigation used a qualitative design, based on a study of three cases (three induction programs). The sources of information were 46 semi-structured interviews, applied in two moments (at the beginning and end of mentoring). Content analysis technique was employed. Data focused on the uniqueness of each case and the commonalities within the cases. Five main challenges and lessons emerged in the design and implementation of mentoring within the induction programs for new principals from Chilean public schools. They comprised the need of (i) developing a shared conceptual framework on mentoring among the institutions and actors involved, which helps align the expectations for the mentoring component within the induction programs, along with assisting in establishing a theory of action of mentoring that is relevant to the public school context; (ii) recognizing trough actions and decisions at different levels that the role of a mentor differs from the role of a principal, which challenge the idea that an effective principal will always be an effective mentor; iii) improving mentors’ selection and preparation processes trough the definition of common guiding criteria to ensure that a mentor takes responsibility for developing critical judgment of novice principals, which implies not limiting the mentor’s actions to assist in the compliance of prescriptive practices and standards; (iv) generating common evaluative models with goals, instruments and indicators consistent with the characteristics of mentoring processes, which helps to assess expected results and impact; and (v) including the design of a mentoring structure as an outcome of the induction programs, which helps sustain mentoring within schools as a collective professional development practice. Results showcased interwoven elements that entail continuous negotiations at different levels. Taking action will contribute to policy efforts aimed at professionalizing the leadership role in public schools.Keywords: induction programs, mentoring, novice principals, school leadership preparation
Procedia PDF Downloads 1257360 The Missing Link in Holistic Health Care: Value-Based Medicine in Entrustable Professional Activities for Doctor-Patient Relationship
Authors: Ling-Lang Huang
Abstract:
Background: The holistic health care should ideally cover physical, mental, spiritual, and social aspects of a patient. With very constrained time in current clinical practice system, medical decisions often tip the balance in favor of evidence-based medicine (EBM) in comparison to patient's personal values. Even in the era of competence-based medical education (CBME), when scrutinizing the items of entrustable professional activities (EPAs), we found that EPAs of establishing doctor-patient relationship remained incomplete or even missing. This phenomenon prompted us to raise this project aiming at advocating value-based medicine (VBM), which emphasizes the importance of patient’s values in medical decisions. A true and effective doctor-patient communication and relationship should be a well-balanced harmony of EBM and VBM. By constructing VBM into current EPAs, we can further promote genuine shared decision making (SDM) and fix the missing link in holistic health care. Methods: In this project, we are going to find out EPA elements crucial for establishing an ideal doctor-patient relationship through three distinct pairs of doctor-patient relationships: patients with pulmonary arterial hypertension (relatively young but with grave disease), patients undergoing surgery (facing critical medical decisions), and patients with terminal diseases (facing forthcoming death). We’ll search for important EPA elements through the following steps: 1. Narrative approach to delineate patients’ values among 2. distinct groups. 3.Hermeneutics-based interview: semi-structured interview will be conducted for both patients and physicians, followed by qualitative analysis of collected information by compiling, disassembling, reassembling, interpreting, and concluding. 4. Preliminarily construct those VBM elements into EPAs for doctor-patient relationships in 3 groups. Expected Outcomes: The results of this project are going to give us invaluable information regarding the impact of patients’ values, while facing different medical situations, on the final medical decision. The competence of well-blending and -balanced both values from patients and evidence from clinical sciences is the missing link in holistic health care and should be established in future EPAs to enhance an effective SDM.Keywords: value-based medicine, shared decision making, entrustable professional activities, holistic health care
Procedia PDF Downloads 1217359 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites
Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar
Abstract:
Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.Keywords: online information services, prediction, security and protection, web based services
Procedia PDF Downloads 358