Search results for: malware classification
933 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 141932 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region
Authors: Ahmad Al Aboudi
Abstract:
The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.Keywords: Islamic architecture, Islamic art, excavations, early Islamic city
Procedia PDF Downloads 276931 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 114930 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 475929 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan
Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou
Abstract:
This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve
Procedia PDF Downloads 292928 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change
Authors: Mikhail Zarechnev, Bora I. Kumova
Abstract:
A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning
Procedia PDF Downloads 411927 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 200926 Impact of Implementation of 5S and TPM in Industrial Organizations: A Review
Authors: Jamal Ahmed Hama Kareem, Noraini Abu Talib
Abstract:
The purpose of this paper is to explore the literature on 5S and Total Productive Maintenance (TPM) and the benefits that are to be derived from their implementation. It also seeks to highlight the main phases for implementing both the 5S and the TPM successfully, along with highlighting aspects that are needed for successful implementation of these two techniques simultaneously in the contemporary manufacturing scenario. The literature on classification of 5S and TPM has so far been very limited. The paper reviews a large number of papers in this field and presents the overview of several of implementation practices of 5S and TPM, and the benefits that can be achieved by the implementation of 5S and TPM as a one system by industrial organizations globally. The paper systematically categorizes the published literature and reveals important issues that influence the successful implementation of 5S and TPM in organizations to improve production effectiveness for competitiveness. Further, the paper also highlights various phases suggested by researchers and practitioners, which ensure smooth and effective implementation of the 5S and TPM in industrial organizations. In the end, study puts forth propositions based on the model of the study after extensive review of literature. The paper will be useful to researchers, maintenance professionals and other concerned officials with improving the performance of production processes effectiveness in industrial organizations.Keywords: 5S, Total Productive Maintenance (TPM), phases of implementation of 5S and TPM, industrial organizations
Procedia PDF Downloads 618925 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 90924 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours
Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal
Abstract:
Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography
Procedia PDF Downloads 80923 Occupational Safety in Construction Projects
Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush
Abstract:
This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.Keywords: management, safety, occupational safety, classification
Procedia PDF Downloads 106922 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 332921 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 128920 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 324919 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 407918 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 437917 The Effectiveness of Intervention Methods for Repetitive Behaviors in Preschool Children with Autism Spectrum Disorder: A Systematic Review
Authors: Akane Uda, Ami Tabata, Mi An, Misa Komaki, Ryotaro Ito, Mayumi Inoue, Takehiro Sasai, Yusuke Kusano, Toshihiro Kato
Abstract:
Early intervention is recommended for children with autism spectrum disorder (ASD), and an increasing number of children have received support and intervention before school age in recent years. In this study, we systematically reviewed preschool interventions focused on repetitive behaviors observed in children with ASD, which are often observed at younger ages. Inclusion criteria were as follows : (1) Child of preschool status (age ≤ 7 years) with a diagnosis of ASD (including autism, Asperger's, and pervasive developmental disorder) or a parent (caregiver) with a preschool child with ASD, (2) Physician-confirmed diagnosis of ASD (autism, Asperger's, and pervasive developmental disorder), (3) Interventional studies for repetitive behaviors, (4) Original articles published within the past 10 years (2012 or later), (5) Written in English and Japanese. Exclusion criteria were as follows: (1) Systematic reviews or meta-analyses, (2) Conference reports or books. We carefully scrutinized databases to remove duplicate references and used a two-step screening process to select papers. The primary screening included close scrutiny of titles and abstracts to exclude articles that did not meet the eligibility criteria. During the secondary screening, we carefully read the complete text to assess eligibility, which was double-checked by six members at the laboratory. Disagreements were resolved through consensus-based discussion. Our search yielded 304 papers, of which nine were included in the study. The level of evidence was as follows: three randomized controlled trials (level 2), four pre-post studies (level 4b), and two case reports (level 5). Seven articles selected for this study described the effectiveness of interventions. Interventions for repetitive behaviors in preschool children with ASD were categorized as five interventions that directly involved the child and four educational programs for caregivers and parents. Studies that directly intervened with children used early intensive intervention based on applied behavior analysis (Early Start Denver Model, Early Intensive Behavioral Intervention, and the Picture Exchange Communication System) and individualized education based on sensory integration. Educational interventions for caregivers included two methods; (a) education regarding combined methods and practices of applied behavior analysis in addition to classification and coping methods for repetitive behaviors, and (b) education regarding evaluation methods and practices based on children’s developmental milestones in play. With regard to the neurophysiological basis of repetitive behaviors, environmental factors are implicated as possible contributors. We assumed that applied behavior analysis was shown to be effective in reducing repetitive behaviors because analysis focused on the interaction between the individual and the environment. Additionally, with regard to educational interventions for caregivers, the intervention was shown to promote behavioral change in children based on the caregivers' understanding of the classification of repetitive behaviors and the children’s developmental milestones in play and adjustment of the person-environment context led to a reduction in repetitive behaviors.Keywords: autism spectrum disorder, early intervention, repetitive behaviors, systematic review
Procedia PDF Downloads 141916 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 120915 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios
Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão
Abstract:
Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario
Procedia PDF Downloads 193914 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge
Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar
Abstract:
This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)
Procedia PDF Downloads 264913 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 16912 Thread Lift: Classification, Technique, and How to Approach to the Patient
Authors: Panprapa Yongtrakul, Punyaphat Sirithanabadeekul, Pakjira Siriphan
Abstract:
Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern.Keywords: thread lift, thread lift method, thread lift technique, thread lift procedure, threading
Procedia PDF Downloads 265911 Mobile Wireless Investigation Platform
Authors: Dimitar Karastoyanov, Todor Penchev
Abstract:
The paper presents the research of a kind of autonomous mobile robots, intended for work and adaptive perception in unknown and unstructured environment. The objective are robots, dedicated for multi-sensory environment perception and exploration, like measurements and samples taking, discovering and putting a mark on the objects as well as environment interactions–transportation, carrying in and out of equipment and objects. At that ground classification of the different types mobile robots in accordance with the way of locomotion (wheel- or chain-driven, walking, etc.), used drive mechanisms, kind of sensors, end effectors, area of application, etc. is made. Modular system for the mechanical construction of the mobile robots is proposed. Special PLC on the base of AtMega128 processor for robot control is developed. Electronic modules for the wireless communication on the base of Jennic processor as well as the specific software are developed. The methods, means and algorithms for adaptive environment behaviour and tasks realization are examined. The methods of group control of mobile robots and for suspicious objects detecting and handling are discussed too.Keywords: mobile robots, wireless communications, environment investigations, group control, suspicious objects
Procedia PDF Downloads 358910 Agglomerative Hierarchical Clustering Based on Morphmetric Parameters of the Populations of Labeo rohita
Authors: Fayyaz Rasool, Naureen Aziz Qureshi, Shakeela Parveen
Abstract:
Labeo rohita populations from five geographical locations from the hatchery and riverine system of Punjab-Pakistan were studied for the clustering on the basis of similarities and differences based on morphometric parameters within the species. Agglomerative Hierarchical Clustering (AHC) was done by using Pearson Correlation Coefficient and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) as Agglomeration method by XLSTAT 2012 version 1.02. A dendrogram with the data on the morphometrics of the representative samples of each site divided the populations of Labeo rohita in to five major clusters or classes. The variance decomposition for the optimal classification values remained as 19.24% for within class variation, while 80.76% for the between class differences. The representative central objects of the each class, the distances between the class centroids and also the distance between the central objects of the classes were generated by the analysis. A measurable distinction between the classes of the populations of the Labeo rohita was indicated in this study which determined the impacts of changing environment and other possible factors influencing the variation level among the populations of the same species.Keywords: AHC, Labeo rohita, hatchery, riverine, morphometric
Procedia PDF Downloads 456909 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 143908 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy
Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen
Abstract:
Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing
Procedia PDF Downloads 274907 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 353906 Analysis of Patient No-Shows According to Health Conditions
Authors: Sangbok Lee
Abstract:
There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.Keywords: healthcare system, no show analysis, process improvment, statistical data analysis
Procedia PDF Downloads 233905 Review of Research on Waste Plastic Modified Asphalt
Authors: Song Xinze, Cai Kejian
Abstract:
To further explore the application of waste plastics in asphalt pavement, this paper begins with the classification and characteristics of waste plastics. It then provides a state-of-the-art review of the preparation methods and processes of waste plastic modifiers, waste plastic-modified asphalt, and waste plastic-modified asphalt mixtures. The paper also analyzes the factors influencing the compatibility between waste plastics and asphalt and summarizes the performance evaluation indicators for waste plastic-modified asphalt and its mixtures. It explores the research approaches and findings of domestic and international scholars and presents examples of waste plastics applications in pavement engineering. The author believes that there is a basic consensus that waste plastics can improve the high-temperature performance of asphalt. The use of cracking processes to solve the storage stability of waste plastic polymer-modified asphalt is the key to promoting its application. Additionally, the author anticipates that future research will concentrate on optimizing the recycling, processing, screening, and preparation of waste plastics, along with developing composite plastic modifiers to improve their compatibility and long-term performance in asphalt pavements.Keywords: waste plastics, asphalt pavement, asphalt performance, asphalt modification
Procedia PDF Downloads 39904 The Effects of Xiang Sha Liu Jun Zi Tang to Diarrhea and Growth Performance of Piglets
Authors: Siao-Wei Jiang, Boy-Young Hsieh, Ching-Liang Hsieh, Cheng-Yung Lin
Abstract:
The problems of multiple drug resistance in the pig farming industry have been emphasized in recent years. Diarrhea syndrome is common in weaning piglets and often treated with antibiotics as a feed additive, leading to the rapid spread of antibiotic resistance and posing high health risks to humans. The study aimed to alleviate diarrhea syndrome with traditional herbal medicine, Xiang Sha Liu Jun Zi Tang, whose effects enhanced digestive function. Piglets at 4 weeks old with stool classified to Bristol stool classification type 6 or type 7 were randomly divided into the control group, group A (1% of Xiang Sha Liu Jun Zi Tang) and group B (0.1% Colistin). The piglets were administrated for 7 days, and their weight, feed intake, and stool score were recorded daily before and after the trial. The results showed that the diarrhea index score in group A and group B improved significantly compared to the control group, indicating that Xiang Sha Liu Jun Zi Tang may have the same effect on alleviating diarrhea syndrome as Colistin, and it may be another replacement for antibiotics.Keywords: pig, diarrhea, herbal medicine, Xiang Sha Liu Jun Zi Tang
Procedia PDF Downloads 51