Search results for: image of the country
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6559

Search results for: image of the country

5269 Windcatcher as Sustainable Solution for Natural Ventilation in Hot Arid Regions: A Case Study of Saudi Arabia

Authors: Payam Nejat, Fatemeh Jomehzadeh, Muhamad Zaimi Abd. Majid, Mohd.Badruddin Yusof, Hasrul Haidar Ismail

Abstract:

Currently, building energy consumption has become an international issue especially in developing countries such as Saudi Arabia. In Saudi Arabia 14% of total final energy consumption is utilized in the building sector. Due to hot arid climate, 60% of total building energy consumption in this country is associated with cooling systems. In addition in 2011, this country was one of top ten CO2 emitting countries which illustrate the significance of renewable resources to sustaining the energy consumption. Wind as an important renewable energy can play a prominent role to supply natural ventilation inside the building and windcatcher as a traditional technique can be implemented for this purpose. In this paper the different types of windcatchers, its performance and function was reviewed. It can be concluded due high temperature and low humidity in most area of Saudi Arabia this technique can be successfully be employed and help to reduce fossil energy consumption and related CO2 emissions.

Keywords: natural ventilation, windcatcher, wind, badgir

Procedia PDF Downloads 593
5268 Shooting in The Foot at The Pulpit; An Analysis of Analysis of The Origin and Progression of Conflict Among the Born-Again Churches in Uganda

Authors: Baguma Charles Abwooli

Abstract:

Whereas they profess to be comrades in the fight to save souls, Born Again Churches in Uganda are shooting each other in the foot over yet to be understood reasons. For a long time, churches have sustained a bitter divide among themselves. The country has witnessed pastoral scandals, including church leaders dragging each other to court, setting each other’s churches ablaze, and even plotting assassination against each her. The most dreadful was when one pastor called a chest-thumping press conference at the demise of another. There is even an emergence of church-owned radio stations purposed to fuel this conflict. Worse still, the division among pastors has been transferred to their congregations to extent that at the first meeting, congregants ask each other where they pray from perhaps to know how to deal with each other. This has caused the born-again to maintain factions among themselves and keeping ready to fight in case there is a battle. This is quite a risk to peace and stability in the country. This kind of belligerence not only defeats the very existence of churches but is a threat to national peace and security, especially as the churches mushroom across the country. It is feared that the vice could spread to the rest of Eastern Africa and beyond, given the connectivity. There is already evidence to this. One Pastor was heard to call the late Ghanaian Pastor T. B. Joshua, a witch who has been training witches in Uganda. He said this at his demise while referring to pastors that subscribe to T. B. Joshua’s approach to preaching the Gospel. This is an abomination, especially in Africa! There is, therefore, an urgent need to understand the roots of this conflict and design measures to decisively manageit. The present study employs tools based on conflict resolution theory to conduct a deep qualitative analysis of the origin and progression of the Born-Againconflict in Uganda with intend to make recommendations of appropriate measures to resolve it.

Keywords: uganda, shooting, pulpit, born again churches

Procedia PDF Downloads 128
5267 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
5266 Exploring the Determinants of Boko Haram Terrorism in Nigerian Security Systems and Economy

Authors: Abara Onu, Augustine Mina Ephraim, Emmanuel Teidi

Abstract:

Terrorism has been a major challenge and is so dare to the Nigerian government in recent times. The actions and activities of the Islamic sect known as Boko Haram had led to enormous loss of lives and properties in the country, mostly the Northern part of Nigeria. Some of these activities entails bombings, suicide attacks, intimidations, sporadic gunfire of the unarmed, blameless and innocent Nigerians, burning of police stations and churches, kidnappings, raping of school girls and women. Nigeria has also been included amongst one of the terrorist countries of the world. This has serious implications for the development of Nigerian economy. Although, Nigeria had made several worried hard work to deal with these challenges masqueraded by terrorism and insecurity in the country but the rate of insurgency and insecurity is still worrisome. The study looks at exploring the determinants of Boko Haram terrorism in Nigerian security systems and economy. Data used for the study work was from questionnaire administered, using Analysis of Variance (ANOVA) method to analyse the data. The result shows that Ideology and funding are significant basic factors that propelled the Boko Haram group in Nigeria. The Boko Haram disaster poses a significant threat to Nigeria’s economy and the military is the best option and solution in tackling the Boko Haram menace in Nigeria. The work x-rayed the following recommendations; government should declare war on terrorism and as well seek support and cooperation from international communities who in time or the other might have faced with this kind ugly experience and challenge and were able to tackle it. Nigerian Military needs to be more empowered with high dangerous weapons to combat the insurgency as well as beef up security across the Country to curb the threats.

Keywords: terrorism, economy, Boko Haram, Nigeria

Procedia PDF Downloads 261
5265 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
5264 The Effectiveness of Executive Order in the Implementation of Human Security Policies: The Violent Case of the Special Anti-Robbery Squad and Youths in Nigeria

Authors: Cita Ayeni

Abstract:

Amidst numerous arguments on reasons for low Human Development (low HDI) in Nigeria ranging from corruption, incompetence of the government and its agencies, mismanagement of funds, terrorism, violence, and crime in the country, just to mention a few. There have been several actions by agencies of the government that for years has threatened the security and development of the citizens, and the country in a broader sense. This paper analyses the activities of SARS (Special Anti-Robbery Squad) as a government agency with a mandate to tackling the high rate of crime in the country but instead have been marred with allegations of violence, killings, extortion, harsh treatment, and terror of the Nigerian citizenry, predominantly the youths. This paper establishes the effect of these actions of the agency on human development in Nigeria, hindering the capacity of the Nigerian youths to earn a decent living due to constant terrorism, extortion, and extrajudicial activities, which in numerous cases resulted in maiming and death, thus instigating fear in the vast majority. This research further analyses the executive order by the then Acting President of Nigeria (Vice-President) that overhauled the agency following many years of continuous public outcry, complaint, grievance, and protest. This work establishes that this order carried out in the absence of the President was to a large extent enough to stop these violations, thereby resulting in little or no recorded complaint or grievance by the public, as many of the officials involved in the gruesome activities were said to have been put away. This would pave way and give freedom to the youths to realize their potentials free from intimidation, violence, and fear from the agencies created to protect them, and on the other hand refocus the new agency FSARS (Federal Special Anti-Robbery Squad) on its real mandate in collaboration with independent organizations acting as a check to its actions. This work thus depicts how direct executive orders on policies pertaining to individual insecurities, on youths in this case, in a country can be a potential drive to increased human development.

Keywords: special anti-robbery squad, Nigerian youths, overhaul, insecurities, human development

Procedia PDF Downloads 170
5263 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast

Authors: Sher Muhammad, Mirza Muhammad Waqar

Abstract:

It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.

Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID

Procedia PDF Downloads 362
5262 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment

Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri

Abstract:

Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.

Keywords: image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality

Procedia PDF Downloads 273
5261 A Study on Good Governance: Its Elements, Models, and Goals

Authors: Ehsan Daryadel, Hamid Shakeri

Abstract:

Good governance is considered as one of the necessary prerequisites for promotion of sustainable development programs in countries. Theoretical model of good governance is going to form the best methods for administration and management of subject country. The importance of maintaining the balance between the needs of present and future generation through sustainable development caused a change in method of management and providing service for citizens that is addressed as the most efficient and effective way of administration of countries. This method is based on democratic and equal-seeking sustainable development which is trying to affect all actors in this area and also be accountable to all citizens’ needs. Meanwhile, it should be noted that good governance is a prerequisite for sustainable development. In fact, good governance means impact of all actors on administration and management of the country for fulfilling public services, general needs of citizens and establishing a balance and harmony between needs of present and future generation. In the present study, efforts have been made to present concepts, definitions, purposes and indices of good governance with a descriptive-analytical method.

Keywords: accountability, efficiency and effectiveness, good governance, rule of law, transparency

Procedia PDF Downloads 303
5260 Clustering Color Space, Time Interest Points for Moving Objects

Authors: Insaf Bellamine, Hamid Tairi

Abstract:

Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering

Procedia PDF Downloads 378
5259 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
5258 Toward a Methodology of Visual Rhetoric with Constant Reference to Mikhail Bakhtin’s Concept of “Chronotope”: A Theoretical Proposal and Taiwan Case Study

Authors: Hsiao-Yung Wang

Abstract:

This paper aims to elaborate methodology of visual rhetoric with constant reference to Mikhail Bakhtin’s concept of “chronotope”. First, it attempts to outline Ronald Barthes, the most representative scholar of visual rhetoric and structuralism, perspective on visual rhetoric and its time-space category by referring to the concurrent word-image, the symbolic systematicity, the outer dialogicity. Second, an alternative approach is explored for grasping the dynamics and functions of visual rhetoric by articulating Mikhail Bakhtin’s concept of “chronotope.” Furthermore, that visual rhetorical consciousness could be identified as “the meaning parabola which projects from word to image,” “the symbolic system which proceeds from sequence to disorder,” “the ideological environment which struggles from the local to the global.” Last but not least, primary vision of the 2014 Taipei LGBT parade would be analyzed preliminarily to evaluate the effectiveness and persuasiveness embodied by specific visual rhetorical strategies. How Bakhtin’s concept of “chronotope” to explain the potential or possible ideological struggle deployed by visual rhetoric might be interpreted empirically and extensively.

Keywords: barthes, chronotope, Mikhail Bakhtin, Taipei LGBT parade, visual rhetoric

Procedia PDF Downloads 474
5257 Raising Forest Voices: A Cross-Country Comparative Study of Indigenous Peoples’ Engagement with Grassroots Climate Change Mitigation Projects in the Initial Pilot Phase of Community-Based Reducing Emissions from Deforestation and forest Degradation

Authors: Karl D. Humm

Abstract:

The United Nations’ Community-based REDD+ (Reducing Emissions from Deforestation and forest Degradation) (CBR+) is a programme that directly finances grassroots climate change mitigation strategies that uplift Indigenous Peoples (IPs) and other marginalised groups. A pilot for it in six countries was developed in response to criticism of the REDD+ programme for excluding IPs from dialogues about climate change mitigation strategies affecting their lands and livelihoods. Despite the pilot’s conclusion in 2017, no complete report has yet been produced on the results of CBR+. To fill this gap, this study investigated the experiences with involving IPs in the CBR+ programmes and local projects across all six pilot countries. A literature review of official UN reports and academic articles identified challenges and successes with IP participation in REDD+ which became the basis for a framework guiding data collection. A mixed methods approach was used to collect and analyse qualitative and quantitative data from CBR+ documents and written interviews with CBR+ National Coordinators in each country for a cross-country comparative analysis. The study found that the most frequent challenges were lack of organisational capacity, illegal forest activities, and historically-based contentious relationships in IP and forest-dependent communities. Successful programmes included IPs and incorporated respect and recognition of IPs as major stakeholders in managing sustainable forests. Findings are summarized and shared with a set of recommendations for improvement of future projects.

Keywords: climate change, forests, indigenous peoples, REDD+

Procedia PDF Downloads 124
5256 Life Cycle Assessment of Todays and Future Electricity Grid Mixes of EU27

Authors: Johannes Gantner, Michael Held, Rafael Horn, Matthias Fischer

Abstract:

At the United Nations Climate Change Conference 2015 a global agreement on the reduction of climate change was achieved stating CO₂ reduction targets for all countries. For instance, the EU targets a reduction of 40 percent in emissions by 2030 compared to 1990. In order to achieve this ambitious goal, the environmental performance of the different European electricity grid mixes is crucial. First, the electricity directly needed for everyone’s daily life (e.g. heating, plug load, mobility) and therefore a reduction of the environmental impacts of the electricity grid mix reduces the overall environmental impacts of a country. Secondly, the manufacturing of every product depends on electricity. Thereby a reduction of the environmental impacts of the electricity mix results in a further decrease of environmental impacts of every product. As a result, the implementation of the two-degree goal highly depends on the decarbonization of the European electricity mixes. Currently the production of electricity in the EU27 is based on fossil fuels and therefore bears a high GWP impact per kWh. Due to the importance of the environmental impacts of the electricity mix, not only today but also in future, within the European research projects, CommONEnergy and Senskin, time-dynamic Life Cycle Assessment models for all EU27 countries were set up. As a methodology, a combination of scenario modeling and life cycle assessment according to ISO14040 and ISO14044 was conducted. Based on EU27 trends regarding energy, transport, and buildings, the different national electricity mixes were investigated taking into account future changes such as amount of electricity generated in the country, change in electricity carriers, COP of the power plants and distribution losses, imports and exports. As results, time-dynamic environmental profiles for the electricity mixes of each country and for Europe overall were set up. Thereby for each European country, the decarbonization strategies of the electricity mix are critically investigated in order to identify decisions, that can lead to negative environmental effects, for instance on the reduction of the global warming of the electricity mix. For example, the withdrawal of the nuclear energy program in Germany and at the same time compensation of the missing energy by non-renewable energy carriers like lignite and natural gas is resulting in an increase in global warming potential of electricity grid mix. Just after two years this increase countervailed by the higher share of renewable energy carriers such as wind power and photovoltaic. Finally, as an outlook a first qualitative picture is provided, illustrating from environmental perspective, which country has the highest potential for low-carbon electricity production and therefore how investments in a connected European electricity grid could decrease the environmental impacts of the electricity mix in Europe.

Keywords: electricity grid mixes, EU27 countries, environmental impacts, future trends, life cycle assessment, scenario analysis

Procedia PDF Downloads 186
5255 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 482
5254 Intercultural Sensitivity in Iran: A Case Study of Intercultural Relations between Turks and Lors

Authors: Sepideh Mohammadi

Abstract:

Iran is a country that boasts of ethnic diversity, comprising various groups such as Turks, Lors, Arabs, Baluchs, Persians, Kurds, Gliks, Azaris, and Tabaris. The majority of people in Iran are Persians and as such, the Persian language is the official language of the country. However, it is also a common language among different ethnic groups. It is worth noting that there is a longstanding history of coexistence and cultural relations between the Turkic and Lor ethnic groups. The purpose of this article is to study the range of intercultural sensitivities of Turks and Lor peoples to identify the state of intercultural competence and reduce conflicts in the direction of cultural policy. It is important to gain insight into the mutual perceptions of Lor and Turkic people towards each other. Understanding these perceptions can greatly aid in fostering stronger relationships and promoting effective communication between the two ethnic groups. The study employed a qualitative content analysis approach to gather data using a semi-structured interview tool. The participants consisted of ten individuals from the Lor ethnic and ten individuals from the Turk ethnic. According to Milton Bennett's six-stage model, our findings reveal that the Turkish and Lor ethnic groups tend to exhibit higher intercultural sensitivity in the second stage, which consists of defense against differences. Both groups tend to emphasize the differences between them, and the notion of "us and the other" holds significant importance for them. It is important to acknowledge that both the Turk and Lor ethnicities consist of various clans, which significantly shape intercultural relations between them. A common stereotype in this regard is that the Turks of Tabriz province often do not recognize the Turks of other provinces of the country as their own. Moreover, our study indicates that an increase in interaction and communication between the Lor and Turk ethnic groups may lead to a reduction in cultural sensitivities between them.

Keywords: intercultural communication, intercultural sensitivity, Iran, Lor, Turk

Procedia PDF Downloads 47
5253 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 57
5252 Foreign Direct Investment, International Trade and Environment in Bangladesh: An Empirical Study

Authors: Shilpi Tripathi

Abstract:

After independence, Bangladesh had to learn to survive on its own without any economic crutches (aid). Foreign direct investment (FDI) became a crucial economic tool for the country to become economically independent. The government started removing restrictions to encourage foreign investment, economic growth, international trade, and the environment. FDI is considered as a way to bridge the saving-investment gap, reduce poverty, balance trade, create jobs for its vast labour force, increase foreign exchange earnings and acquire new modern technology and management skills in the country. At the same time, spillovers of foreign investments in Bangladesh, such as low wages (compared to laborers of developed countries), poor working conditions and unbridled exploitation of the domestic resources, environmental externalities, etc., cannot be ignored. The most important adverse implications of FDI inflows noticed are the environmental problems, which are further impacting the health and society of the country. This paper empirically studies the relationship between FDI, economic growth, international trade (exports and Imports), and the environment since 1996. The first part of the paper focuses on the background and trends of FDI, GDP, trade, and environment (CO₂). The second part focuses on the literature review on the relationship between all the variables. The last part of the paper examines the results of empirical analysis like co-integration and Granger causality. The findings of the paper reveal that a uni-directional relationship exists between FDI, CO₂, and international trade (exports and imports). The direction of the causality reveals that FDI inflow is one of the major contributors to high-volume international trade. At the same time, FDI and international trade both are contributing to carbon emissions in Bangladesh. The paper concludes with the policy recommendations that will ensure environmentally friendly trade, investment, and growth in Bangladesh for the future.

Keywords: foreign direct investment, GDP, international trade, CO₂, Granger causality, environment

Procedia PDF Downloads 181
5251 Alternate Dispute Resolution: Expeditious Justice

Authors: Uzma Fakhar, Osama Fakhar, Aamir Shafiq Ch

Abstract:

Methods of alternate dispute resolution (ADR) like conciliation, arbitration, mediation are the supplement to ensure inexpensive and expeditious justice in a country. Justice delayed has not only created chaos, but an element of rebellious behavior towards judiciary is being floated among people. Complexity of traditional judicial system and its diversity has created an overall coherence. Admittedly, In Pakistan the traditional judicial system has failed to achieve its goals which resulted in the backlog of cases pending in courts, resultantly even the critics of alternate dispute resolution agree to restore the spirit of expeditious justice by reforming the old Panchayat system. The Government is keen to enact certain laws and make amendments to facilitate the resolution of a dispute through a simple and faster ADR framework instead of a lengthy and exhausting complex trial in order to create proliferation and faith in alternate dispute resolution. This research highlights the value of ADR in a country like Pakistan for revival of the confidence of the people upon the judicial process and a useful judicial tool to reduce the pressure on the judiciary.

Keywords: alternate dispute resolution, development of law, expeditious justice, Pakistan

Procedia PDF Downloads 222
5250 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 113
5249 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 592
5248 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 114
5247 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW

Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder

Abstract:

Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.

Keywords: breast cancer, screening, breast density, artificial intelligence, mammography

Procedia PDF Downloads 3
5246 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 77
5245 Overcoming Mistrusted Masculinity: Analyzing Muslim Men and Their Aspirations for Fatherhood in Denmark

Authors: Anne Hovgaard Jorgensen

Abstract:

This study investigates how Muslim fathers in Denmark are struggling to overcome notions of mistrust from teachers and educators. Starting from school-home-cooperation (parent conferences, school-home communication, etc.), the study finds that many Muslim fathers do not feel acknowledged as a resource in the upbringing of their children. To explain these experiences further, the study suggest the notion of ‘mistrusted masculinity’ to grasp the controlling image these fathers meet in various schools and child-care-institutions in the Danish Welfare state. The paper is based on 9 months of fieldwork in a Danish school, a social housing area and in various ‘father groups’ in Denmark. Additional, 50 interviews were conducted with fathers, children, mothers, schoolteachers, and educators. By using Connell's concepts 'hegemonic' and 'marginalized' masculinity as steppingstones, the paper argues that these concepts might entail a too static and dualistic picture of gender. By applying the concepts of 'emergent masculinity' and 'emergent fatherhood' the paper brings along a long needed discussion of how Muslim men in Denmark are struggling to overcome and change the controlling images of them as patriarchal and/or ignorant fathers regarding the upbringing of their children. As such, the paper shows how Muslim fathers are taking action to change this controlling image, e.g. through various ‘father groups’. The paper is inspired by the phenomenological notions of ‘experience´ and in the light of this notion, the paper tells the fathers’ stories about their upbringing of their children and aspirations for fatherhood. These stories share light on how these fathers take care of their children in everyday life. The study also shows that the controlling image of these fathers have affected how some Muslim fathers are actually being fathers. The study shows that fear of family-interventions from teachers or social workers e.g. have left some Muslim fathers in a limbo, being afraid of scolding their children, and being confused of ‘what good parenting in Denmark is’. This seems to have led to a more lassie fair upbringing than these fathers actually wanted. This study is important since anthropologists generally have underexposed the notion of fatherhood, and how fathers engage in the upbringing of their children. Over more, the vast majority of qualitative studies of fatherhood have been on white middleclass fathers, living in nuclear families. In addition, this study is crucial at this very moment due to the major refugee crisis in Denmark and in the Western world in general. A crisis, which has resulted in a vast number of scare campaigns against Islam from different nationalistic political parties, which enforces the negative controlling image of Muslim fathers.

Keywords: fatherhood, Muslim fathers, mistrust, education

Procedia PDF Downloads 191
5244 The Evolution of Traditional Rhythms in Redefining the West African Country of Guinea

Authors: Janice Haworth, Karamoko Camara, Marie-Therèse Dramou, Kokoly Haba, Daniel Léno, Augustin Mara, Adama Noël Oulari, Silafa Tolno, Noël Zoumanigui

Abstract:

The traditional rhythms of the West African country of Guinea have played a centuries-long role in defining the different people groups that make up the country. Throughout their history, before and since colonization by the French, the different ethnicities have used their traditional music as a distinct part of their historical identities. That is starting to change. Guinea is an impoverished nation created in the early twentieth-century with little regard for the history and cultures of the people who were included. The traditional rhythms of the different people groups and their heritages have remained. Fifteen individual traditional Guinean rhythms were chosen to represent popular rhythms from the four geographical regions of Guinea. Each rhythm was traced back to its native village and video recorded on-site by as many different local performing groups as could be located. The cyclical patterns rhythms were transcribed via a circular, spatial design and then copied into a box notation system where sounds happening at the same time could be studied. These rhythms were analyzed for their consistency-over-performance in a Fundamental Rhythm Pattern analysis so rhythms could be compared for how they are changing through different performances. The analysis showed that the traditional rhythm performances of the Middle and Forest Guinea regions were the most cohesive and showed the least evidence of change between performances. The role of music in each of these regions is both limited and focused. The Coastal and High Guinea regions have much in common historically through their ethnic history and modern-day trade connections, but the rhythm performances seem to be less consistent and demonstrate more changes in how they are performed today. In each of these regions the role and usage of music is much freer and wide-spread. In spite of advances being made as a country, different ethnic groups still frequently only respond and participate (dance and sing) to the music of their native ethnicity. There is some evidence that this self-imposed musical barrier is beginning to change and evolve, partially through the development of better roads, more access to electricity and technology, the nation-wide Ebola health crisis, and a growing self-identification as a unified nation.

Keywords: cultural identity, Guinea, traditional rhythms, west Africa

Procedia PDF Downloads 391
5243 Agro-Insurance and Farming Development Opportunities in Georgia

Authors: Tamar Lazariashvili

Abstract:

Introduction: The agro-insurance has great importance for agricultural development in the country. In the article, the insurance market of the Georgian agricultural sector has been studied, the level of interest of farmers with insurance products and the trend of demand for those products are revealed; also, the importance of insurance is substantiated. Methodology: The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend) and qualitative research (in-depth interview with farmers). They claim that the main reason for aggravation is the low level of trust, less awareness about the conditions of the insurance contract. In order to eradicate distrust towards agro-insurance, it is recommended to increase awareness of insured farmers in terms of an insurance agreement. In the case of disputable issues between insurance companies and the customers (farmers), it is advisable to enact the Mediation Service, which will be able to protect the rights of insured farmers. Main Findings: Insurance companies prefer to deal with large farmers, the number of them is very small in Georgia as the credit market. The government interference in this sector is also a very cautious topic. However, the government can strengthen the awareness of farmers about the characteristics and advantages of the insurance system in order to increase the number of insured and reduce insurance premiums for farmers. Conclusion: Enactment of agro-insurance will increase the interest and confidence of financial institutions in the farming sector, financial resources will be accessible to the farmers that will facilitate the stable development of the sector in the country. The size of the agro-insurance market in the country should be increased, and the new territories should be covered. The State must have an obligation to ensure the risk of farmers and subsidize insurance companies. Based on the analysis of the insurance market, the conclusions on agro-insurance issues and the relevant recommendations are proposed.

Keywords: Agro-insurance, agricultural product, Agro-market, farming

Procedia PDF Downloads 123
5242 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 79
5241 Extraction of Urban Building Damage Using Spectral, Height and Corner Information

Authors: X. Wang

Abstract:

Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.

Keywords: building damage, corner, earthquake, height, very high resolution (VHR)

Procedia PDF Downloads 213
5240 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 130