Search results for: contact stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5578

Search results for: contact stress

4288 Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams

Authors: Khoa Tan Nguyen, Tuan Anh Le, Kihak Lee

Abstract:

This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly ash-based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.

Keywords: geopolymer concrete beam, finite element mehod, stress strain relation, modulus elasticity

Procedia PDF Downloads 391
4287 The Relationship between Personal, Psycho-Social and Occupational Risk Factors with Low Back Pain Severity in Industrial Workers

Authors: Omid Giahi, Ebrahim Darvishi, Mahdi Akbarzadeh

Abstract:

Introduction: Occupational low back pain (LBP) is one of the most prevalent work-related musculoskeletal disorders in which a lot of risk factors are involved that. The present study focuses on the relation between personal, psycho-social and occupational risk factors and LBP severity in industrial workers. Materials and Methods: This research was a case-control study which was conducted in Kurdistan province. 100 workers (Mean Age ± SD of 39.9 ± 10.45) with LBP were selected as the case group, and 100 workers (Mean Age ± SD of 37.2 ± 8.5) without LBP were assigned into the control group. All participants were selected from various industrial units, and they had similar occupational conditions. The required data including demographic information (BMI, smoking, alcohol, and family history), occupational (posture, mental workload (MWL), force, vibration and repetition), and psychosocial factors (stress, occupational satisfaction and security) of the participants were collected via consultation with occupational medicine specialists, interview, and the related questionnaires and also the NASA-TLX software and REBA worksheet. Chi-square test, logistic regression and structural equation modeling (SEM) were used to analyze the data. For analysis of data, IBM Statistics SPSS 24 and Mplus6 software have been used. Results: 114 (77%) of the individuals were male and 86 were (23%) female. Mean Career length of the Case Group and Control Group were 10.90 ± 5.92, 9.22 ± 4.24, respectively. The statistical analysis of the data revealed that there was a significant correlation between the Posture, Smoking, Stress, Satisfaction, and MWL with occupational LBP. The odds ratios (95% confidence intervals) derived from a logistic regression model were 2.7 (1.27-2.24) and 2.5 (2.26-5.17) and 3.22 (2.47-3.24) for Stress, MWL, and Posture, respectively. Also, the SEM analysis of the personal, psycho-social and occupational factors with LBP revealed that there was a significant correlation. Conclusion: All three broad categories of risk factors simultaneously increase the risk of occupational LBP in the workplace. But, the risks of Posture, Stress, and MWL have a major role in LBP severity. Therefore, prevention strategies for persons in jobs with high risks for LBP are required to decrease the risk of occupational LBP.

Keywords: industrial workers occupational, low back pain, occupational risk factors, psychosocial factors

Procedia PDF Downloads 257
4286 Exploration Of The Nonlinear Viscoelastic Behavior Of Yogurt Using Lissajous Curves

Authors: Hugo Espinosa-Andrews

Abstract:

Introduction: Yogurt is widely accepted worldwide due to its high nutritional value, consistency, and texture. Their rheological properties play a significant role in consumer acceptance and are related to the manufacturing process and formulation. Typically, the viscoelastic characteristics of yogurts are studied using the small amplitude oscillatory shear test; however, the initial stages of flow and oral processing are described in the nonlinear zone, in which a large amplitude oscillatory stress test is applied. The objective of this work was to analyze the nonlinear viscoelastic behavior of commercial yogurts using Lissajous curves. Methods: Two commercial yogurts were purchased in a local store in Guadalajara Jalisco Mexico: a natural Greek-style yogurt and a low-fat traditional yogurt. Viscoelastic properties were evaluated using a large amplitude oscillatory stress procedure (LAOS). A crosshatch geometry of 40 mm and a truncation of 1000 µm were used. Stress sweeps were performed at 6.28 rad/s from 1 to 250 Pa at 5°C. The nonlinear viscoelastic properties were analyzed using the Lissajous curves. Results: The yogurts showed strain-viscoelastic behavior related to deformation-dependent materials. In the low-strain region, the elastic modulus predominated over the viscous modulus, showing gel-elastic properties. The sol-gel transitions were observed at approximately 66.5 Pa for the Greek yogurt, double that detected for traditional yogurt. The viscoelastic behavior of the yogurts was characteristic of weak excess deformation: behavior indicating a stable molecular structure at rest, and moderate structure at medium shear-forces. The normalized Lissajous curves characterized viscoelastic transitions of the yogurt as the stress increased. Greater viscoelasticity deformation was observed in Greek yogurt than in traditional yogurt, which is related to the presence of a protein network with a greater degree of crosslinking. Conclusions: The yogurt composition influences the viscoelastic properties of the material. Yogurt with the higher percentage of protein has greater viscoelastic and viscous properties, which describe a product of greater consistency and creaminess.

Keywords: yogurt, viscoelastic properties, LAOS, elastic modulus

Procedia PDF Downloads 20
4285 Post-Traumatic Stress Disorder: Management at the Montfort Hospital

Authors: Kay-Anne Haykal, Issack Biyong

Abstract:

The post-traumatic stress disorder (PTSD) rises from exposure to a traumatic event and appears by a persistent experience of this event. Several psychiatric co-morbidities are associated with PTSD and include mood disorders, anxiety disorders, and substance abuse. The main objective was to compare the criteria for PTSD according to the literature to those used to diagnose a patient in a francophone hospital and to check the correspondence of these two criteria. 700 medical charts of admitted patients on the medicine or psychiatric unit at the Montfort Hospital were identified with the following diagnoses: major depressive disorder, bipolar disorder, anxiety disorder, substance abuse, and PTSD for the period of time between April 2005 and March 2006. Multiple demographic criteria were assembled. Also, for every chart analyzed, the PTSD criteria, according to the Manual of Mental Disorders (DSM) IV were found, identified, and grouped according to pre-established codes. An analysis using the receiver operating characteristic (ROC) method was elaborated for the study of data. A sample of 57 women and 50 men was studied. Age was varying between 18 and 88 years with a median age of 48. According to the PTSD criteria in the DSM IV, 12 patients should have the diagnosis of PTSD in opposition to only two identified in the medical charts. The ROC method establishes that with the combination of data from PTSD and depression, the sensitivity varies between 0,127 and 0,282, and the specificity varies between 0,889 and 0,917. Otherwise, if we examine the PTSD data alone, the sensibility jumps to 0.50, and the specificity varies between 0,781 and 0,895. This study confirms the presence of an underdiagnosed and treated PTSD that causes severe perturbations for the affected individual.

Keywords: post-traumatic stress disorder, co-morbidities, diagnosis, mental health disorders

Procedia PDF Downloads 385
4284 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan

Authors: Sehrish Qayyum

Abstract:

Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.

Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security

Procedia PDF Downloads 104
4283 Molecular Timeline Analysis of Acropora: Review of Coral Development, Growth and Environmental Resilience

Authors: Ariadna Jalife Gómez, Claudia Rangel Escareño

Abstract:

The Acropora coral genus has experienced impactful consequences of climate change, especially in terms of population reduction related to limited thermal tolerance, however, comprehensive resources for genetic responses of these corals to phenomena are lacking. Thus, this study aims to identify key genes expressed across different developmental stages and conditions of Acropora spp. highlighted in published studies given the shared tissue and polyp-level characteristics among the species comprising the genus, as it is hypothesized that common reproductive, developmental, and stress response mechanisms are conserved. The presented resources, aiming to streamline the genus’ biology, elucidate several signaling pathways of development and stress response that contribute to the understanding of researchers of overall biological responses, while providing a genetic framework for potential further studies that might contribute to reef preservation strategies.

Keywords: acropora, development, genes, transcriptomics

Procedia PDF Downloads 10
4282 Study on Biodeterioration of Proteinous Objects in Museums and Toxic Efficacy of Myristica Fragrans and Syzygium Aromaticum Oils against the Larvae of Anthrenus verbasci

Authors: Fatma Faheem, K. Abduraheem

Abstract:

Museums are custodians of natural and cultural heritage. Objects like tribal dresses, headgears, weapons, musical instruments, manuscripts and other ethnocultural materials housed in museums are prized possessions of intellectual and cultural property of people. Tropical countries like India have a favorable climatic condition for biodeterioration. Organic materials such as leather and parchment objects which form a substantial part of natural history collections of museums across the world are promptly infested by insects like dermestid beetles, tenebrionides, silver fishes, cockroaches and other micro-organisms. The environmental problems caused due to the overuse of pesticides and other non-degradable chemicals have been the matter of serious concern for both the scientists and public in recent years. Synthetic pesticides are very expensive and also highly toxic for humans and its environment. Due to its high health risk factor government has taken severe initiatives on policy of banning it. In order to overcome the problems of biodeterioration, natural biocides should be applied. In this paper, comparative study has been done to investigate the toxic efficacy of Myristica fragrans and Syzygium aromaticum oil in variation with contact and stomach toxicity against larvae of Anthrenus verbasci.

Keywords: biodeterioration, contact toxicity, cultural heritage, natural biocides, natural heritage, stomach toxicity

Procedia PDF Downloads 242
4281 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia

Authors: Baohua Yu

Abstract:

In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.

Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction

Procedia PDF Downloads 303
4280 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 159
4279 Enhancement of Hydrophobicity of Thermally Evaporated Bi Thin Films by Oblique Angle Deposition

Authors: Ravish K. Jain, Jatinder Kaur, Shaira Arora, Arun Kumar, Amit K. Chawla, Atul Khanna

Abstract:

Surface-dependent properties such as hydrophobicity can be modified significantly by oblique angle deposition technique. Bi thin films were studied for their hydrophobic nature. The effects of oblique angle deposition on structural, surface morphology, electrical and wettability properties of Bi thin films have been studied and a comparison of these physical properties of normally deposited and obliquely deposited Bi films has been carried out in this study. X-ray diffraction studies found that films have highly oriented hexagonal crystal structure and crystallite size is smaller for obliquely deposited (70 nm) film as compared to that of the normally deposited film (111 nm). Raman spectra of the films consist of peaks corresponding to E_g and A_1g first-order Raman modes of bismuth. The atomic force and scanning electron microscopy studies show that the surface roughness of obliquely deposited film is higher as compared to that of normally deposited film. Contact angle measurements revealed that both films are strongly hydrophobic in nature with the contact angles of 105ᵒ and 119ᵒ for normally and obliquely deposited films respectively. Oblique angle deposition enhances the hydrophobicity of the film. The electrical conductivity of the film is significantly reduced by oblique angle deposition. The activation energies for electrical conduction were determined by four-probe measurements and are 0.016 eV and 0.018 eV for normally and obliquely deposited films respectively.

Keywords: bi thin films, hydrophobicity, oblique angle deposition, surface morphology

Procedia PDF Downloads 258
4278 Gambusia an Excellent Indicator of Metals Stress

Authors: W. Khati, Y. Guasmi

Abstract:

The activity of acetylcholinesterase (AChE) was studied in freshwater fish exposed to two heavy metals lead and cadmium. Measurements were made after short exposures (4 and 7 days) at concentrations of 1, 5, and 7μg/L cadmium and 1.25, 2.25, and 5 mg/L of lead. Cadmium induced no significant increases in activity of AChE in the gills for the lowest dose. Except significant inhibition on 7 days. In muscle of Gambusia, under stress of metallic lead, the activity increases compared to the control are noted at 4 days of treatment and inhibitions to 7 days of exposure. The analysis of variance (time, treatment) indicates only a very significant time effect (p<0.05), and as for cadmium, a significant body effect (p<0.01) is recorded. This small fish sedentary, colonizing particularly quiet environments, polluted, can only be the ideal bioindicator of contamination and bioaccumulation of metals. The presence of lead and cadmium in the bodies of fish is a risk factor not only for the lives of these aquatic species, but also for the man who is the top predator at the end of the food chain.

Keywords: biomarkers, bioindicator, environmenlal health, metals

Procedia PDF Downloads 497
4277 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 121
4276 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 405
4275 Solvent-Free Synthesis of Sorbents for Removal of Oil Spills

Authors: Mohammad H. Al-Sayah, Khalid Jarrah, Soleiman Hisaindee

Abstract:

Hydrophobic sorbents are usually used to remove oil spills from water surfaces. In this study, the hydrophilic fibers of natural cotton were chemically modified with a solvent-free process to modify them into hydrophobic fibers that can remove oil from water surfaces. The cellulose-based fibers of cotton were reacted with trichlorosilanes through gas-solid reaction in a dry chamber. Cotton fibers were exposed to vapors of four different chloroalkylsilanes at room temperature for 24 hours. The chlorosilanes were namely trichloromethylsilane, dichlorodimethyl silane, butyltrichlorosilane, and trichloro (3,3,3-trifluoropropyl) silane. The modified cotton fibers were characterized by IR-spectroscopy, thermogravimetric analysis (TGA) and Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM-EDS). The degree of substitution for each of the grafted alkyl groups was in the range between 0.1 and 0.3 per glucose residue. As a result of sialylation, the cotton fibers became hydrophobic; this was reflected by water contact-angle measurements of the fibers which increased from zero for the unmodified cotton to above 100 degrees for the modified fibers. In addition, the adsorption capacity of the fibers for oil from water surfaces increased by about five times that of the unmodified cotton reaching 18 g oil/g of cotton modified by dimethyl substituted silyl ethers. The optimal fiber-oil contact time and temperature for adsorption were 10 mins at 25°C, respectively. Therefore, the efficacy of cotton fibers to remove oil spills from contaminated water surfaces was significantly enhanced by using a simple solvent-free and environment-friendly process.

Keywords: gas-solid silyl reaction, modified cellulose, solvent-free, oil pollution, cotton

Procedia PDF Downloads 168
4274 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 180
4273 Liquid Bridges in a Complex Geometry: Microfluidic Drop Manipulation Inside a Wedge

Authors: D. Baratian, A. Cavalli, D. van den Ende, F. Mugele

Abstract:

The morphology of liquid bridges inside complex geometries is the subject of interest for many years. These efforts try to find stable liquid configuration considering the boundary condition and the physical properties of the system. On the other hand precise manipulation of droplets is highly significant in many microfluidic applications. The liquid configuration in a complex geometry can be switched by means of external stimuli. We show manipulation of droplets in a wedge structure. The profile and position of a drop in a wedge geometry has been calculated analytically assuming negligible contact angle hysteresis. The characteristic length of liquid bridge and its interfacial tension inside the surrounding medium along with the geometrical parameters of the system determine the morphology and equilibrium position of drop in the system. We use electrowetting to modify one the governing parameters to manipulate the droplet. Electrowetting provides the capability to have precise control on the drop position through tuning the voltage and consequently changing the contact angle. This technique is employed to tune drop displacement and control its position inside the wedge. Experiments demonstrate precise drop movement to its predefined position inside the wedge geometry. Experimental results show promising consistency as it is compared to our geometrical model predictions. For such a drop manipulation, appealing applications in microfluidics have been considered.

Keywords: liquid bridges, microfluidics, drop manipulation, wetting, electrowetting, capillarity

Procedia PDF Downloads 475
4272 Halotolerant Phosphates Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Efficiency in Potassium, Zinc Solubilization, and Promoting Wheat (Triticum Durum 'karim') Germination

Authors: F. Z. Aliyat, M. El Guilli, L. Nassiri, J. Ibijbijen

Abstract:

Climate change is becoming a crucial factor that can significantly impact all ecosystems. It has a negative impact on the environment in many parts of the planet. Agriculture is the main sector affected by climate change. Particularly, the salinity of agricultural soils is among the problems caused by climate change. The use of phosphate solubilizing bacteria (PSB) as a biofertilizer requires previous research on their tolerance to abiotic stress, specifically saline stress tolerance, before the formation of biofertilizers. In this context, the main goal of this research was to assess the salinity tolerance of four strains: Serratia rubidaea strain JCM1240, Enterobacter bugandensis strain 247BMC, Pantoea agglomerans strain ATCC 27155, Pseudomonas brassicacearum subsp. Neoaurantiaca strain CIP109457, which was isolated from solid phosphate sludge. Additionally, their capacity to solubilize potassium and zinc, as well as their effect on Wheat (Triticum Durum 'Karim') germination. The four PSB strains were tested for their ability to solubilize phosphate in NBRIP medium with tricalcium phosphate (TCP) as the sole source of phosphorus under salt stress. Five concentrations of NaCl were used (0%, 0.5%, 1%, 2.5%, 5%). Their phosphate solubilizing activity was estimated by the vanadate-molybdate method. The potassium and zinc solubilization has been tested qualitatively and separately on solid media with mica and zinc oxide as the only sources of potassium and zinc, respectively. The result showed that the solubilization decreases with the increase in the concentration of NaCl; all the strains solubilize the TCP even with 5% NaCl, with a significant difference among the four strains. The Serratia rubidaea strain was the most tolerant strain. In addition, the four strains solubilize the potassium and the zinc. The Serratia rubidaea strain was the most efficient. Therefore, biofertilization with PSB salt-tolerant strains could be a climate-change-preparedness strategy for agriculture in salt soil.

Keywords: bioavailability of mineral nutrients, phosphate solid sludge; phosphate solubilization, potassium solubilization, salt stress, zinc solubilization.

Procedia PDF Downloads 83
4271 Investigating the Effect of Juncture on Comprehension among Adult Learners of English in Nigeria

Authors: Emmanuel Uba, Oluwasegun Omidiora, Eugenia Abiodun-Eniayekan

Abstract:

The role of phonology on reading comprehension is long established in the literature. However, the vast majority of studies on the relationship between phonology and reading or comprehension among adults involve investigating the role of intonation, stress, and segmental knowledge on understanding texts. Not much attention is paid to junctural observation and its effect on the interpretation of texts. This study, therefore, presents a preliminary case-study investigation of the effect of juncture on comprehension of texts among adult Nigerian learners of English. Eighty adult learners of English in Nigeria were presented with fifteen seemingly ambiguous sentences to interpret. The sentences were structured in a way that pausing at different points would produce different interpretations. The results reveal that wrong application of pause is capable of affecting comprehension even when other phonological factors such as stress and intonation are observed properly.

Keywords: comprehension, juncture, phonology, reading

Procedia PDF Downloads 297
4270 Cellular Automata Modelling of Titanium Alloy

Authors: Jyoti Jha, Asim Tewari, Sushil Mishra

Abstract:

The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample.

Keywords: compression test, Cellular automata, DEFORM , DRX

Procedia PDF Downloads 299
4269 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 351
4268 Resilience, Mental Health, and Life Satisfaction

Authors: Saba Harati, Nasrin Arian Parsa

Abstract:

The current research was an attempt to investigate the effect of resilience on mental health and life satisfaction. In one Cross Sectional research, 287 (173 females and 114 males) students of Tehran University were participated their average age was 23.17 years old (SD=4.9). The instruments used for assessing the research variables included: Cutter and Davidson resilience scale (CD-RISC), the short form of the depression-anxiety-stress scale, and life satisfaction scale. The data analysis was done in the form of structural equation model. The results of Simultaneous Hierarchical Multiple Regression Analysis indicated that there was a significant mediating role of the negative emotions (depression, anxiety, and stress), in the relationship between the family resilience (p < 0.001) and satisfaction with life (p < 0.001). Resilience results in life satisfaction by reducing the emotional problems (or increasing the mental health level). The effect of the resilience variable on life satisfaction was indirect.

Keywords: resilience, negative emotion, mental health, life satisfaction

Procedia PDF Downloads 496
4267 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models

Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi

Abstract:

Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209

Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress

Procedia PDF Downloads 150
4266 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: concrete, FEM, pavement, sensitivity, simulation

Procedia PDF Downloads 328
4265 Cultural Orientation as a Moderator between Social Support Needs and Psychological Well-Being among Canadian University Students

Authors: Allison Streutker, Josephine Tan

Abstract:

Universities across Canada have experienced unprecedented growth in international student enrollment from across the world. As cultural diversity in Canada and other countries increases, understanding the social support needs of all students is important for providing them with the assistance they need to thrive psychologically and academically. Those from individualistic cultural orientations tend to seek explicit social support, which involves expressly asking for assistance in times of stress. However, those from collectivistic cultural orientations are more likely to seek implicit social support, where encouragement is obtained from spending time among valued social groups without explicitly talking about problems. This study explored whether the relationship between the type of social support needs (implicit or explicit) and psychological and academic functioning might be moderated by cultural orientations (individualistic, collectivistic) among university students. Participants were 110 university students (70 women, 40 men; mean age = 24.8 years, SD = 6.6). They completed the Individualism and Collectivism Scale (ICS), Perceived Stress Scale (PSS), Interpersonal Support Evaluation List (ISEL) which assesses implicit and explicit social support, Satisfaction with Life Scale (SWLS), Scale of Positive and Negative Experience (SPANE) which yields positive and negative experience scores, Flourishing Scale (FS), and reported their grade point average (GPA) as a measure of academic performance. Moderated regression analysis demonstrated that, for those scoring lower on individualism, reporting lower level of implicit support predicted higher levels of perceived stress. For those scoring higher on individualism, lower levels of explicit social support predicted higher levels of perceived stress and a greater number of negative experiences. Generally, higher levels of implicit support were associated with greater satisfaction with life for all students, with the association becoming stronger among students with higher collectivism scores. No other significant findings were found. The results point to the value of considering the cultural orientations of students when designing programs to maintain and improve their sense of well-being.

Keywords: cultural orientation, social support, university students, well-being

Procedia PDF Downloads 235
4264 Contactless Attendance System along with Temperature Monitoring

Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani

Abstract:

The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.

Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature

Procedia PDF Downloads 185
4263 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 89
4262 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi

Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu

Abstract:

A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.

Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi

Procedia PDF Downloads 170
4261 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 128
4260 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 293
4259 Energy Metabolites Show Cross-Protective Plastic Responses for Stress Resistance in a Circumtropical Drosophila Species

Authors: Ankita Pathak, Ashok Munjal, Ravi Parkash

Abstract:

Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation; and changes in trehalose, proline and body lipids in D. ananassae flies reared under wet or dry season specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization, as well as rates of metabolic change for each energy metabolite, were significantly higher in wet season flies than dry season flies. Energy metabolite changes due to inter-related stressors (heat vs. desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet or dry season flies. Thus, low or high humidity induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.

Keywords: wet-dry seasons, plastic changes, stress related traits, energy metabolites, cross protection

Procedia PDF Downloads 169