Search results for: vulnerability intelligence
1000 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation
Authors: Noura Al-Ajmi, Mohammed A. Almulla
Abstract:
With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.Keywords: headache diagnosis system, prescription recommender system, expert system, backward rule-based system
Procedia PDF Downloads 219999 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network
Authors: Navdeep Singh Randhawa, Shally Sharma
Abstract:
Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.Keywords: wireless sensor network, routing, swarm intelligence, MPRSO
Procedia PDF Downloads 353998 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico
Authors: Ismene Ithai Bras-Ruiz
Abstract:
Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise
Procedia PDF Downloads 128997 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México
Authors: María Reveles-Miranda, Daniella Pacheco-Catalán
Abstract:
Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors
Procedia PDF Downloads 92996 Radical Web Text Classification Using a Composite-Based Approach
Authors: Kolade Olawande Owoeye, George R. S. Weir
Abstract:
The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.Keywords: extremist, web pages, classification, semantics, posit
Procedia PDF Downloads 146995 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 70994 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 109993 Testing Chat-GPT: An AI Application
Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi
Abstract:
ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.Keywords: artificial Inelegance, chatGPT, open AI, NLP
Procedia PDF Downloads 78992 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes
Authors: Mohamed Osama Hassaan
Abstract:
Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).Keywords: strengthening, columns, advanced composite materials, earthquakes
Procedia PDF Downloads 78991 Hope for Technological Entrepreneurship in Developing Countries: Perceived Motivations, Intentions and Decisions in Africa
Authors: Umugwaneza Francoise, Ntamazeze Janviere, Donghong Ding
Abstract:
Entrepreneurship has been considered by majority people from developing world as “no other option” kind of career. Consequently, for a long time entrepreneurship in developing countries has been mainly practiced by people who have low or not at all formal education. Even today, to some extent, much of the actions taken by governments, donors and some societies have tendency to consider entrepreneurship as an instrument to lift up the most vulnerable population including uneducated women, school drop outers, people with disabilities and other groups who live with some sort of vulnerability. However, there is a shortage of knowledge based and know-how entrepreneurship in developing countries. Although, the entrepreneurship done with formal educated people would contribute indispensably and sustain the development, the low numbers of formal educated people become entrepreneurs in developing countries. Empirically, this paper investigated the influential factors affecting the entrepreneurial motivation, intentions and decision among African scientists and engineers postgraduate from china universities since 1995 to 2014. Results revealed that 39% are entrepreneurs, 43% work for private sectors and 18% work for governments. Only 6% of respondents are in technological entrepreneurship related to their field of graduation. Study location, mentors or research supervisors and life style are the major factors influenced their decisions to become entrepreneurs whereas complex financial systems and political instability pushed some to employments. Interestingly, significant number of entrepreneurs did not have any entrepreneurial intentions. This paper concludes with suggestions to policy makers and investors in order to encouraging technological entrepreneurs which will provide more opportunities, create jobs and improve people’s quality of life.Keywords: technological entrepreneurship, entrepreneurial motivation, entrepreneurship decision making, entrepreneurship intentions, formal education
Procedia PDF Downloads 373990 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms
Authors: Saeid Jalilzadeh
Abstract:
PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.Keywords: controller, GA, optimization, PID, PSO
Procedia PDF Downloads 544989 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace
Authors: Artur Willoński
Abstract:
This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.Keywords: collaborative learning, self-regulated learning, emotions, AI
Procedia PDF Downloads 16988 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 99987 Mobulid Ray Post-Release Mortality to Assess the Feasibility of Live-Release Management Measures
Authors: Sila K. Sari, Betty J.L. Laglbauer, Muhammad G. Salim, Irianies C. Gozali, Iqbal Herwata, Fahmi Fahmi, Selvia Oktaviyani, Isabel Ender, Sarah Lewis, Abraham Sianipar, Mark Erdmann
Abstract:
Taking strides towards the sustainable use of marine stocks requires science-based management of target fish populations and reduction of bycatch in non-selective fisheries. Among elasmobranchs, mobulid rays are faced with high extinction risk due to intrinsic vulnerability to fishing and their conservation has been recognized as a strong priority both in Indonesia and worldwide. Despite their common vulnerabilities to fishing pressure due to slow growth, late maturation and low fecundity, only manta rays, but not devil rays, are protected in Indonesian waters. However, both manta and devil rays are captured in non-selective fisheries, in particular drift gillnets, since their habitat overlaps with fishing grounds for primary target species (e.g. marlin, swordfish and bullet tuna off the coast of Muncar). For this reason, mobulid populations are being heavily impacted, and while national-level protections are crucial to help conservation, they may not suffice alone to insure populations sustainability. In order to assess the potential of applying live-release management measures to conserve mobulids captured as bycatch in drift gillnets, we deployed pop-up survival archival transmitters to assess post-release mortality in Indonesian mobulid rays. We also assessed which fishing practices, in particular, soak duration, affected post-release mortality in order to draw relevant conclusions for management.Keywords: Mobulid, Devil ray, Manta ray, Bycatch
Procedia PDF Downloads 173986 The Effect of Artificial Intelligence on Real Estate and Construction Marketing
Authors: Michael Saad Thabet Azrek
Abstract:
Experiential advertising method is an unforgettable revel that remains deeply anchored within the customer's memory. Furthermore, client pleasure is defined as the emotional reaction to the stories provided that relate to precise products or services bought. Consequently, experiential advertising sports can influence the extent of consumer pleasure and loyalty. In this context, they have a look at pursuits to observe the connection between experiential advertising, purchaser satisfaction and loyalty to splendor merchandise in Konya. The outcomes of this examination confirmed that experiential marketing is an important indicator of consumer pride and loyalty, and that experiential advertising and marketing have a large positive impact on patron satisfaction and loyalty.Keywords: sponsorship, marketing communication theories, marketing communication tools internet, marketing, tourism, tourism management corporate responsibility, employee organizational performance, internal marketing, internal customer experiential marketing, customer satisfaction, customer loyalty, social sciences.
Procedia PDF Downloads 38985 The Impact of Artificial Intelligence on Human Rights Legislations and Evolution
Authors: Shenouda Farag Aziz Ibrahim
Abstract:
The relationship between terrorism and human rights has become an important issue in the fight against terrorism worldwide. This is based on the fact that terrorism and human rights are closely linked, so that when the former begins, the latter suffers. This direct link was recognized in the Vienna Declaration and Program of Action adopted by the International Conference on Human Rights held in Vienna on 25 June 1993, which recognized that terrorist acts aim to violate human rights in all their forms and manifestations. . Therefore, terrorism represents an attack on fundamental human rights. For this purpose, the first part of this article focuses on the relationship between terrorism and human rights and aims to show the relationship between these two concepts. In the second part, the concept of cyber threat and its manifestations are discussed. An analysis of the fight against terrorism in the context of human rights was also made..Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 43984 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms
Authors: Ramin Mansouri
Abstract:
Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.Keywords: reservoirs, differential evolution, dam, Optimal operation
Procedia PDF Downloads 78983 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 422982 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry
Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour
Abstract:
Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry
Procedia PDF Downloads 157981 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies
Authors: Muhammad Siddique, Volodymyr Lugovskyy
Abstract:
This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies
Procedia PDF Downloads 80980 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis
Authors: Avi Shrivastava
Abstract:
In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine
Procedia PDF Downloads 73979 The Impact of Artificial Intelligence on E-Learning
Authors: Sameil Hanna Samweil Botros
Abstract:
The variation of social networking websites inside higher training has garnered enormous hobby in recent years, with numerous researchers thinking about it as a possible shift from the conventional lecture room-based learning paradigm. However, this boom in research and carried out research, but the adaption of SNS-based modules has not proliferated inside universities. This paper commences its contribution with the aid of studying the numerous fashions and theories proposed in the literature and amalgamates together various effective aspects for the inclusion of social technology within e-gaining knowledge. A three-phased framework is similarly proposed, which informs the important concerns for the hit edition of SNS in improving the student's mastering experience. This suggestion outlines the theoretical foundations as a way to be analyzed in sensible implementation across worldwide university campuses.Keywords: eLearning, institutionalization, teaching and learning, transformation vtuber, ray tracing, avatar agriculture, adaptive, e-learning, technology eLearning, higher education, social network sites, student learning
Procedia PDF Downloads 31978 Building Safer Communities through Institutional Collaboration in Ghana: An Appraisal of Existing Arrangement
Authors: Louis Kusi Frimpong, Martin Oteng-Ababio
Abstract:
The problem of crime and insecurity in urban environments are often complex, multilayered, multidimensional and sometimes interwoven. It is from this perspective that recent approaches and strategies aimed at responding to crime and insecurity have looked at the problem from a social, economic, spatial and institutional point of view. In Ghana, there is much understanding of how various elements of the social and spatial setting influence crime and safety concerns of residents in urban areas. However, little research attention has been given to the institutional dimension of the problem of crime and insecurity in urban Ghana. In particular, scholars and policymakers in the area of safety and security have scarcely interrogated the forms of collaboration that exist between the various formal and informal institutions and how gaps and lapses in this collaboration influence vulnerability to crime and feelings of insecurity. Using Sekondi-Takoradi as a case study and drawing on both primary and secondary data, this paper assesses the activities of various institutions both formal and informal in crime control and prevention in the Sekondi-Takoradi metropolis, the third largest city in Ghana. More importantly, the paper seeks to address gaps in the institutional arrangement and coordination between and among institutions at the forefront of crime prevention efforts in the metropolis and by extension Ghanaian cities. The study found that whiles there is some form of collaboration between the police and the community, little collaboration existed between planning authorities and the police on the one hand, and the community on the other hand. The paper concludes that in light of the complex nature of a crime, institutional coordination and an inclusive approach involving formal and informal will be critical in promoting safer cities in Ghana.Keywords: crime prevention, coordination, Ghana, institutional arrangement
Procedia PDF Downloads 127977 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 71976 The Increasing Importance of the Role of AI in Higher Education
Authors: Joshefina Bengoechea Fernandez, Alex Bell
Abstract:
In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics
Procedia PDF Downloads 107975 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks
Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen
Abstract:
This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity
Procedia PDF Downloads 116974 Influence of Temperature and Immersion on the Behavior of a Polymer Composite
Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli
Abstract:
This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical
Procedia PDF Downloads 117973 Current Applications of Artificial Intelligence (AI) in Chest Radiology
Authors: Angelis P. Barlampas
Abstract:
Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses
Procedia PDF Downloads 72972 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 13971 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 92