Search results for: n-D heat equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4807

Search results for: n-D heat equation

3547 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses

Authors: Zhanar Imanova

Abstract:

Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.

Keywords: two-planet, three-body problem, variable mass, evolutionary equations

Procedia PDF Downloads 64
3546 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: electrochemical technique, intergranular corrosion, sensitization, stainless steels

Procedia PDF Downloads 182
3545 Entropy Analysis of a Thermo-Acoustic Stack

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation.

Keywords: thermo-acoustics, entropy, second law of thermodynamics, Rott’s linear thermo-acoustic approximation

Procedia PDF Downloads 403
3544 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
3543 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 337
3542 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 549
3541 Effect Of Shading In Evaporatively Cooled Greenhouses In The Mediterranean Region

Authors: Nikolaos Katsoulas, Sofia Faliagka, Athanasios Sapounas

Abstract:

Greenhouse ventilation is an effective way to remove the extra heat from the greenhouse through air exchange between inside and outside when outside air temperature is lower. However, in the Mediterranean areas during summer, most of the day, the outside air temperature reaches values above 25 C; and natural ventilation can not remove the excess heat outside the greenhouse. Shade screens and whitewash are major existing measures used to reduce the greenhouse air temperature during summer by reducing the solar radiation entering the greenhouse. However, the greenhouse air temperature is reduced with a cost in radiation reduction. In addition, due to high air temperature values outside the greenhouse, generally, these systems are not sufficient for extracting the excess energy during sunny summer days and therefore, other cooling methods, such as forced ventilation combined with evaporative cooling, are needed. Evaporative cooling by means of pad and fan or fog systems is a common technique to reduce sensible heat load by increasing the latent heat fraction of dissipated energy. In most of the cases, the greenhouse growers, when all the above systems are available, apply both shading and evaporative cooling. If a movable screen is available, then the screen is usually activated when a certain radiation level is reached. It is not clear whether the shading screens should be used over the growth cycle or only during the most sensitive stages when the crops had a low leaf area and the canopy transpiration rate cannot significantly contribute to the greenhouse cooling. Furthermore, it is not clear which is the optimum radiation level that screen must be activated. This work aims to present the microclimate and cucumber crop physiological response and yield observed in two greenhouse compartments equipped with a pad and fan evaporative cooling system and a thermal/shading screen that is activated at different radiation levels: when the outside solar radiation reaches 700 or 900 W/m2. The greenhouse is located in Velestino, in Central Greece and the measurements are performed during the spring -summer period with the outside air temperature during summer reaching values up to 42C.

Keywords: microclimate, shading, screen, pad and fan, cooling

Procedia PDF Downloads 82
3540 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: characteristic equation, interface waves, potential function, Stoneley waves, wave structure

Procedia PDF Downloads 319
3539 Environmental and Economic Analysis of Absorption Air Conditioning Unit Onboard Marine Vehicles: Case Study of Passenger Vessel

Authors: Ibrahim S. Seddiek, Nader R. Ammar

Abstract:

One of the most important equipment that affects the performance of passenger ships is the air conditioning system, which in turn consumes considerable electric loads. In this paper, the waste heat energies of exhaust gases and jacket cooling water of marine diesel engines for these ships are analyzed to be used as heat sources for absorption refrigeration unit (ARU). Economic and environmental analysis of the absorption refrigeration cycle operated with the two heat sources that use lithium bromide as absorbent is carried out. In addition, environmental and economic analysis for the absorption cycle is performed. As a case study, high-speed passenger vessel operating in the Red Sea area has been investigated. The results show that a considerable specific economic benefit could be achieved in case of applying absorption air condition that operates by water cooling system over that operates by main engine exhaust gases. Environmentally, applying ARU machine during cruise will reduce total ship’s fuel consumption by about 104 ton per year. This will result in reducing NOₓ, SOₓ, and CO₂ emissions with cost-effectiveness of 6.99 $/kg, 18.44 $/kg, and 0.117 $/kg, respectively.

Keywords: ship emissions, IMO, lithium bromide-water ARU, analysis, thermodynamic, economic and environmental analysis

Procedia PDF Downloads 284
3538 The French, the Yoruba, and the H-Thing: Sharing and Realising Same Phenomenon Differently

Authors: Rose-Juliet Anyanwu

Abstract:

The principal objective of this paper is to investigate whether some sort of phonological processes, such as elision, aspiration, glottalisation, and hardening can be used to account for the behaviour of the glottal fricative (or approximant, as the case may be) ‘h’ in both French and Yoruba. French and Yoruba speakers generally tend to say, for instance ‘ockey’ and ‘amburger’, instead of ‘hockey’ and ‘hamburger’, respectively. Whereas the Yoruba conversely say, for instance ‘hadd’ for ‘add’, ‘heat’ for ‘eat’ on the one hand and ‘ard’ for ‘hard’, ‘eat’ for ‘heat’ on the other hand, on a similar note, it is not quite clear whether the French, however, if not at least in rare instances, would tend to force themselves to pronounce (in any form whatsoever) the h-sound. Recorded sentences containing h-initial as well as vowel-initial words will be used for the investigation. The present paper is meant to contribute to work on aspiration, compensation, elision, and glottalisation, as well as hardening.

Keywords: aspiration, compensation, glottalisation, hardening

Procedia PDF Downloads 170
3537 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova

Abstract:

The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 431
3536 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds

Authors: Md. Najiur Rahman

Abstract:

This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.

Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity

Procedia PDF Downloads 105
3535 Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites

Authors: H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa

Abstract:

The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area.

Keywords: adsorption, crystallinity, ion exchange, zeolite

Procedia PDF Downloads 258
3534 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance

Authors: Mulue Girmay Gebreslasie

Abstract:

Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.

Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology

Procedia PDF Downloads 99
3533 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 480
3532 Investigating the Thermal Comfort Properties of Mohair Fabrics

Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman

Abstract:

Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.

Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance

Procedia PDF Downloads 142
3531 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 297
3530 Creep Effect on Composite Beam with Perfect Steel-Concrete Connection

Authors: Souici Abdelaziz, Tehami Mohamed, Rahal Nacer, Said Mohamed Bekkouche, Berthet Jean-Fabien

Abstract:

In this paper, the influence of the concrete slab creep on the initial deformability of a bent composite beam is modelled. This deformability depends on the rate of creep. This means the rise in value of the longitudinal strain ε c(x,t), the displacement D eflec(x,t) and the strain energy E(t). The variation of these three parameters can easily affect negatively the good appearance and the serviceability of the structure. Therefore, an analytical approach is designed to control the status of the deformability of the beam at the instant t. This approach is based on the Boltzmann’s superposition principle and very particularly on the irreversible law of deformation. For this, two conditions of compatibility and two other static equilibrium equations are adopted. The two first conditions are set according to the rheological equation of Dischinger. After having done a mathematical arrangement, we have reached a system of two differential equations whose integration allows to find the mathematical expression of each generalized internal force in terms of the ability of the concrete slab to creep.

Keywords: composite section, concrete, creep, deformation, differential equation, time

Procedia PDF Downloads 383
3529 Financial Analysis of Feasibility for a Heat Utilization System Using Rice Straw Pellets: Heating Energy Demand and the Collection and Storage Method in Nanporo, Japan

Authors: K.Ishii, T. Furuichi, A. Fujiyama, S. Hariya

Abstract:

Rice straw pellets are a promising fuel as a renewable energy source. Financial analysis is needed to make a utilization system using rise straw pellets financially feasible, considering all regional conditions including stakeholders related to the collection and storage, production, transportation and heat utilization. We conducted the financial analysis of feasibility for a heat utilization system using rice straw pellets which has been developed for the first time in Nanporo, Hokkaido, Japan. Especially, we attempted to clarify the effect of factors required for the system to be financial feasibility, such as the heating energy demand and collection and storage method of rice straw. The financial feasibility was found to improve when increasing the heating energy demand and collecting wheat straw in August separately from collection of rice straw in November because the costs of storing rice straw and producing pellets were reduced. However, the system remained financially unfeasible. This study proposed a contractor program funded by a subsidy from Nanporo local government where a contracted company, instead of farmers, collects and transports rice straw in order to ensure the financial feasibility of the system, contributing to job creation in the region.

Keywords: rice straw, pellets, heating energy demand, collection, storage

Procedia PDF Downloads 404
3528 Temperature Control and Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

Authors: Ying-Ming Su, Mei-Shu Huang

Abstract:

To mitigate the urban heat island effect has become a global issue facing the challenge of climate change. Through literature reviews, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect relatively. Because there are not enough open space and park, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary school is asked priority to build green roof and important educational place to promote green roof concept. Testo 175-H1 recording device was used to record the temperature and humidity difference between roof surface and interior space below roof with and without green roof for the long-term. We also use questionnaire to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary school. The results indicated the temperature of roof without greening was higher than that with greening about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof related to the character of the accumulation and dissipation of heat of greening probably. The temperature of interior space below green roof was normally lower than that without green roof about 1°C showed that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, students wished all classes can take turns to maintain the green roof. Teachers and students that school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may access and touch the green roof can be more aware of the green roof benefit. We suggest architect to increase the accessibility and visibility of green roof, such as a part of the activity space. This idea can be a reference of the green roof curriculum design.

Keywords: comfort level, elementary school, green roof, heat island effect

Procedia PDF Downloads 416
3527 Heterologous Expression of Heat-Shock Protein Improves Butanol Yield in a High-Speedy Growing Clostridium acetobutylicum Mutant

Authors: Min-Shiuan Liou, Yi Shan Yang, Yang-Zhan Huang, Chia-Wen Hsieh

Abstract:

A high speed growing and butanol-tolerant Clostridium acetobutylicum HOL1 mutant was screened throughout continuous adaption culture with C. acetobutylicum ATCC 824. The HOL1 strain can grow well in 10 g/L butanol contained CGM medium and can produce about 12.8 g /L butanol during 24 hrs. The C. acetobutylicum HOL1 strain was able to produce 166 mM butanol with 21 mM acetone at pH 4.8, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.79, which is much higher than that (0.6) of the wild-type strain C. acetobutylicum ATCC 824. The acetate and butyrate accumulation were not observed during fermentation of the HOL1 strain. A hyper-butanol producing C. acetobutylicum HOL1 (pBPHS-3), which was created to overexpress the Bacillus psychrosaccharolyticus originated specific heat-shock protein gene, hspX, from a clostridial phosphotransbutyrylase promoter, was studied for its potential to produce a high titer of butanol. Overexpression of hspX resulted in increased final butanol yield 47% and 30% higher than those of the the ATCC824 and the HOL1 strains, respectively. The remarkable high-speed growth and butanol tolerance of strain HOL1 (pBPHS-3) demonstrates that overexpression of heterogeneous stress protein-encoding gene, hspX, could help C. acetobutylicum to effectively produce a high concentration of butanol.

Keywords: Clostridium acetobutylicum, butanol, heat-shock protein, resistance

Procedia PDF Downloads 429
3526 Thermal Performance of Fully Immersed Naturally Cooled Server

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in a dielectric liquid is studied numerically. In the present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid which can be modeled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide-range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over-relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increases, the average Nusselt number of the upper unit increases sharply, whereas the lower one keeps on the same level.

Keywords: convective cooling of server, Darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 401
3525 Analysis Thermal of Composite Material in Cold Systems

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.

Keywords: cold system, latex, flow of heat, asphalt production

Procedia PDF Downloads 462
3524 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer

Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song

Abstract:

Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.

Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board

Procedia PDF Downloads 395
3523 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

Authors: A. Ja, J. Belabid, A. Cheddadi

Abstract:

This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Keywords: natural convection, double-diffusion, porous medium, annular geometry, finite differences

Procedia PDF Downloads 342
3522 Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez-Camus

Abstract:

In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense.

Keywords: fractional evolution equations, Volterra integral equations, minimal and maximal mild solutions, neutral type equations, non-local in time equations

Procedia PDF Downloads 176
3521 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 301
3520 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria

Authors: Shittu Ahmed Tajudeen

Abstract:

This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.

Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model

Procedia PDF Downloads 453
3519 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity

Procedia PDF Downloads 161
3518 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 189