Search results for: medical image analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31917

Search results for: medical image analysis

30657 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 143
30656 New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections

Authors: Lise Paule Labéjof, Raíza Sales Pereira Bizerra, Galileu Barbosa Costa, Thaísa Barros dos Santos

Abstract:

Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.

Keywords: image quality, microscopy research, staining technique, ultra thin section

Procedia PDF Downloads 434
30655 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett

Abstract:

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile graphic-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visual-based application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Keywords: ICT4D, mobile technology, tuberculosis, visual-based reminder

Procedia PDF Downloads 430
30654 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 156
30653 Photomicrograph-Based Neuropathology Consultation in Tanzania; The Utility of Static-Image Neurotelepathology in Low- And Middle-Income Countries

Authors: Francis Zerd, Brian E. Moore, Atuganile E. Malango, Patrick W. Hosokawa, Kevin O. Lillehei, Laurence Lemery Mchome, D. Ryan Ormond

Abstract:

Introduction: Since neuropathologic diagnosis in the developing world is hampered by limitations in technical infrastructure, trained laboratory personnel, and subspecialty-trained pathologists, the use of telepathology for diagnostic support, second-opinion consultations, and ongoing training holds promise as a means of addressing these challenges. This research aims to assess the utility of static teleneuropathology in improving neuropathologic diagnoses in low- and middle-income countries. Methods: Consecutive neurosurgical biopsy and resection specimens obtained at Muhimbili National Hospital in Tanzania between July 1, 2018, and June 30, 2019, were selected for retrospective, blinded static-image neuropathologic review followed by on-site review by an expert neuropathologist. Results: A total of 75 neuropathologic cases were reviewed. The agreement of static images and on-site glass diagnosis was 71% with strict criteria and 88% with less stringent criteria. This represents an overall improvement in diagnostic accuracy from 36% by general pathologists to 71% by a neuropathologist using static telepathology (or 76% to 88% with less stringent criteria). Conclusions: Telepathology offers a suitable means of providing diagnostic support, second-opinion consultations, and ongoing training to pathologists practicing in resource-limited countries. Moreover, static digital teleneuropathology is an uncomplicated, cost-effective, and reliable way to achieve these goals.

Keywords: neuropathology, resource-limited settings, static image, Tanzania, teleneuropathology

Procedia PDF Downloads 102
30652 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
30651 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
30650 Multimodality in Storefront Windows: The Impact of Verbo-Visual Design on Consumer Behavior

Authors: Angela Bargenda, Erhard Lick, Dhoha Trabelsi

Abstract:

Research in retailing has identified the importance of atmospherics as an essential element in enhancing store image, store patronage intentions, and the overall shopping experience in a retail environment. However, in the area of atmospherics, store window design, which represents an essential component of external store atmospherics, remains a vastly underrepresented phenomenon in extant scholarship. This paper seeks to fill this gap by exploring the relevance of store window design as an atmospheric tool. In particular, empirical evidence of theme-based theatrical store front windows, which put emphasis on the use of verbo-visual design elements, was found in Paris and New York. The purpose of this study was to identify to what extent such multimodal window designs of high-end department stores in metropolitan cities have an impact on store entry decisions and attitudes towards the retailer’s image. As theoretical construct, the linguistic concept of multimodality and Mehrabian’s and Russell’s model in environmental psychology were applied. To answer the research question, two studies were conducted. For Study 1 a case study approach was selected to define three different types of store window designs based on different types of visual-verbal relations. Each of these types of store window design represented a different level of cognitive elaboration required for the decoding process. Study 2 consisted of an on-line survey carried out among more than 300 respondents to examine the influence of these three types of store window design on the consumer behavioral variables mentioned above. The results of this study show that the higher the cognitive elaboration needed to decode the message of the store window, the lower the store entry propensity. In contrast, the higher the cognitive elaboration, the higher the perceived image of the retailer’s image. One important conclusion is that in order to increase consumers’ propensity to enter stores with theme-based theatrical store front windows, retailers need to limit the cognitive elaboration required to decode their verbo-visual window design.

Keywords: consumer behavior, multimodality, store atmospherics, store window design

Procedia PDF Downloads 202
30649 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 338
30648 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
30647 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 281
30646 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers

Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri

Abstract:

Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.

Keywords: blood cell count, mandatory testing, occupational exposure, radiation

Procedia PDF Downloads 462
30645 A Hybrid Watermarking Model Based on Frequency of Occurrence

Authors: Hamza A. A. Al-Sewadi, Adnan H. M. Al-Helali, Samaa A. K. Khamis

Abstract:

Ownership proofs of multimedia such as text, image, audio or video files can be achieved by the burial of watermark is them. It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications would be in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: authentication, copyright protection, information hiding, ownership, watermarking

Procedia PDF Downloads 565
30644 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: mean shift, object tracking, blur extent, wavelet transform, motion blur

Procedia PDF Downloads 211
30643 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 162
30642 An Analysis of Brand-Building Characteristics in the Iran Airline Websites

Authors: Pedram Behyar, Zahra Bayat

Abstract:

The internet and web are changing ways of “far reaching scope and potential for transformation of the marketing functions”. The web is developing in a faster rate than any previous new communication medium. The website of destination has become a crucial branding channel, that is why all businesses are changing their way to communicate with their customers to encounter their needs and wants in better ways. Website provides numerous opportunities for businesses to strengthen their relationship with their customers. One of these opportunities is website component that enables internet users to make two-way communication with the businesses.

Keywords: marketing communication, brand image, usability, privacy and security, personalization and customization, responsiveness, customer online web experience

Procedia PDF Downloads 504
30641 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
30640 Frequency of Occurrence Hybrid Watermarking Scheme

Authors: Hamza A. Ali, Adnan H. M. Al-Helali

Abstract:

Generally, a watermark is information that identifies the ownership of multimedia (text, image, audio or video files). It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications are done according to a secret key in a descriptive model that would be either in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: watermarking, ownership, copyright protection, steganography, information hiding, authentication

Procedia PDF Downloads 368
30639 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 270
30638 Spaces of Interpretation: Personal Space

Authors: Yehuda Roth

Abstract:

In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old.

Keywords: quantum-like interpretation, ambiguous image, determination, quantum-like collapse, classified representation

Procedia PDF Downloads 104
30637 Histological and Morphometric Studies of the Liver of Goats Aborted

Authors: Toumi Farah, Charallah Salima

Abstract:

In the Algerian Sahara, goat farming is predominant, and it’s associated with other types of breeding, particularly camel and sheep; it also constitutes a significant proportion of breeding exclusively goat. This Saharan goat is a small ruminant with a black dress with white’s spots, hanging ears, and a coat more or less long. It is known for its hardiness and resistance to adverse conditions of arid zones and its perfect ecophysiological adaptation to harsh environmental conditions. However, pregnancy alterations, particularly abortion, degrade its productivity and cause economic losses, having both direct and indirect effects on animal production, like the costs of veterinary interventions and the reconstitution of livestock. The purpose of this work is to study the histological aspect of the liver of goats’ aborted living under nomadic herds in the region of Béni-Abbès (30° 7' N, 2° 10 'O). The organs were collected in physiological serum, rinsed, and then fixed with formaldehyde (37°, diluted at 10%). After that, these samples were processed for a topographic study. The morphometric study of the liver was performed by using an image analysis and processing software "Image J"; the various measurements obtained are intended to specify the supposed stage of development according to the body weight. The histological structure of the liver shows that the hepatic parenchyma consists of vascular conjunctive spaces surrounded by Glisson’s capsule. The sinusoids and hepatic portal vein are full of red blood cells, representing sinusoidal congestion and a thrombosed vein. At high magnification, the blood vessels show the presence of vascular thrombosis and haemorrhage in some areas of the hepatic parenchyma. Morphometric analysis shows that the number of liver parenchymal cells and the diameter of liver vessels vary according to the stage of development. The results obtained will provide details of the anatomical and cellular elements that can be used in the diagnosis of early or late abortion and late embryonic death. It would be interesting to find, by immunohistochemistry, some inflammatory markers useful for monitoring the progress of pregnancy and bioindicators of fetomaternal distress.

Keywords: aborting goat, arid zone, liver, histopathology

Procedia PDF Downloads 99
30636 Utilizing Street Medicine to Reduce Communicable Disease Prevalence in a Cost-Effective Way

Authors: Bailey Hall, Athena Hoppe, Tevyn Kagele, Anna Nichols, Breeanna Messner

Abstract:

The Spokane Street Medicine (SSM) Program aims to deliver medical care to people experiencing homelessness in Spokane, Washington. Street medicine is designed to function in a non-traditional setting to help deliver healthcare to a largely underserved population. In this analysis, the SSM Program’s medical charts from street and shelter encounters in early 2021 were reviewed in order to identify illness and diseases in people experiencing homelessness in Spokane. More than half of the prescriptions written during these encounters were for either an antibacterial, an antibiotic, or an antifungal. Estimates of the cost to the local healthcare system are included. Initiating treatment for communicable diseases in people experiencing homelessness via street medicine efforts greatly reduces economic costs while improving health outcomes.

Keywords: ethical issues in public health, equity issues in public health, health economics, health disparities, healthcare costs, medical public health, public health ethics, street medicine

Procedia PDF Downloads 189
30635 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 135
30634 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 493
30633 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad

Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar

Abstract:

Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.

Keywords: clinics, decontamination, management, medical waste

Procedia PDF Downloads 78
30632 The Ratio of Second to Fourth Digit Length Correlates with Cardiorespiratory Fitness in Male College Students Men but Not in Female

Authors: Cheng-Chen Hsu

Abstract:

Background: The ratio of the length of the second finger (index finger, 2D) to the fourth finger (ring finger, 4D) (2D:4D) is a putative marker of prenatal hormones. A low 2D:4D ratio is related to high prenatal testosterone (PT) levels. Physiological research has suggested that a low 2D:4D ratio is correlated with high sports ability. Aim: To examine the association between cardiorespiratory fitness and 2D:4D. Methods: Assessment of 2D:4D; Images of hands were collected from participants using a computer scanner. Hands were placed lightly on the surface of the plate. Image analysis was performed using Image-Pro Plus 5.0 software. Feature points were marked at the tip of the finger and at the center of the proximal crease on the second and fourth digits. Actual measurement was carried out automatically, 2D:4D was calculated by dividing 2nd by 4th digit length. YMCA 3-min Step Test; The test involves stepping up and down at a rate of 24 steps/min for 3 min; a tape recording of the correct cadence (96 beats/min) is played to assist the participant in keeping the correct pace. Following the step test, the participant immediately sits down and, within 5 s, the tester starts counting the pulse for 1 min. The score for the test, the total 1-min postexercise heart rate, reflects the heart’s ability to recover quickly. Statistical Analysis ; Pearson’s correlation (r) was used for assessing the relationship between age, physical measurements, one-minute heart rate after YMCA 3-minute step test (HR) and 2D:4D. An independent-sample t-test was used for determining possible differences in HR between subjects with low and high values of 2D:4D. All statistical analyses were carried out with SPSS 18 for Window. All P-values were two-tailed at P = 0.05, if not reported otherwise. Results: A median split by 2D:4D was applied, resulting in a high and a low group. One-minute heart rate after YMCA 3-minute step test was significantly difference between groups of male right-hand 2D:4D (p = 0.024). However, no difference in left-hand 2D:4D values between groups in male, and no digit ratio difference between groups in female. Conclusion: The results showed that cardiopulmonary fitness is related to right 2D:4D, only in men. We argue that prenatal testosterone may have an effect on cardiorespiratory fitness in male but not in female.

Keywords: college students, digit ratio, finger, step test, fitness

Procedia PDF Downloads 275
30631 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 98
30630 Knowledge, Attitude, and Practice among Medical Students Regarding Basic Life Support

Authors: Sumia Fatima, Tayyaba Idrees

Abstract:

Cardiac Arrest and Heart Failures are an important causes of mortality in developed and developing countries and even a second spent without Cardiopulmonary Resuscitation (CPR) increases the risk of mortality. Youngs doctors are expected to partake in CPR from the first day and if they are not taught basic life support (BLS) skills during their studies. They have next to no opportunity to learn them in clinical settings. To determine the exact level of knowledge of Basic Life Support among medical students. To compare the degree of knowledge among 1st and 2nd year medical students of RMU (Rawalpindi Medical University), using self-structured questionnaires. A cross sectional, qualitative primary study was conducted in March 2020 in order to analyse theoretical and practical knowledge of Basic Life Support among Medical Students of 1st and 2nd year MBBS. Self-Structured Questionnaires were distributed among 300 students, 150 from 1st year and 150 from 2nd year. Data was analysed using SPSS v 22. Chi Square test was employed. The results showed that only 13 (4%) students had received formal BLS training.129 (42%) students had encountered accidents in real life but had not known how to react. Majority responded that Basic Life Support should be made part of medical college curriculum (189 students), 194 participants (64%) had moderate knowledge of both theoretical and practical aspects of BLS. 75-80% students of both 1st and 2nd year had only moderate knowledge, which must be improved for them to be better healthcare providers in future. It was also found that male students had more practical knowledge than females, but both had almost the same proficiency in theoretical knowledge. The study concluded that the level of knowledge of BLS among the students was not up to the mark, and there is a dire need to include BLS training in the medical colleges’ curriculum.

Keywords: basic cardiac life support, cardiac arrest, awareness, medical students

Procedia PDF Downloads 94
30629 Research on the Overall Protection of Historical Cities Based on the 'City Image' in Ancient Maps: Take the Ancient City of Shipu, Zhejiang, China as an Example

Authors: Xiaoya Yi, Yi He, Zhao Lu, Yang Zhang

Abstract:

In the process of rapid urbanization, many historical cities have undergone excessive demolition and construction under the protection and renewal mechanism. The original pattern of the city has been changed, the urban context has been cut off, and historical features have gradually been lost. The historical city gradually changed into the form of decentralization and fragmentation. The understanding of the ancient city includes two levels. The first one refers to the ancient city on the physical space, which defined an ancient city by its historic walls. The second refers to the public perception of the image, which is derived from people's spatial identification of the ancient city. In ancient China, people draw maps to show their way of understanding the city. Starting from ancient maps and exploring the spatial characteristics of traditional Chinese cities from the perspective of urban imagery is a key clue to understanding the spatial characteristics of historical cities on an overall level. The spatial characteristics of the urban image presented by the ancient map are summarized into two levels by typology. The first is the spatial pattern composed of the center, axis and boundary. The second is the space element that contains the city, street, and sign system. Taking the ancient city of Shipu as a typical case, the "city image" in the ancient map is analyzed as a prototype, and it is projected into the current urban space. The research found that after a long period of evolution, the historical spatial pattern of the ancient city has changed from “dominant” to “recessive control”, and the historical spatial elements are non-centralized and fragmented. The wall that serves as the boundary of the ancient city is transformed into “fragmentary remains”, the streets and lanes that serve as the axis of the ancient city are transformed into “structural remains”, and the symbols of the ancient city center are transformed into “site remains”. Based on this, the paper proposed the methods of controlling the protection of land boundaries, the protecting of the streets and lanes, and the selective restoring of the city wall system and the sign system by accurate assessment. In addition, this paper emphasizes the continuity of the ancient city's traditional spatial pattern and attempts to explore a holistic conservation method of the ancient city in the modern context.

Keywords: ancient city protection, ancient maps, Shipu ancient city, urban intention

Procedia PDF Downloads 128
30628 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 261