Search results for: heat consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6016

Search results for: heat consumption

4756 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 388
4755 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 280
4754 Desalination Technologies and Desalination Integrated with Renewable Energies – A Case Study

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

As water resources are rapidly getting diminished, more and more interest is paid to the desalination of saline waters. Desalination has become a reliable and cost effective solution in provision of fresh water particularly in the arid areas of the world such as Middle East countries. However, the dramatic increase of utilizing desalination will cause a series of problems which are significantly related to energy consumption and environment impacts. The use of renewable energy sources to provide energy required by desalination processes is a feasible and simultaneously environmental friendly solution. In this study an attempt has been made to present a review on desalination technologies, desalination integrated with renewable energies, in brief, and practical progresses made during recent years particularly in the field of desalination by wind energy which is the most common form of renewable energies. Moreover, an economic analysis of a wind powered RO desalination system comprising of 10×2.5 MW wind turbines is done, and the results will be compared to those of a cogeneration system comprising of one 25 MW gas turbines, heat recovery steam generators (HRSG) and MED-TVC desalination.

Keywords: wind turbine, desalination, RO, MED, cogeneration, gas turbine, HRSG

Procedia PDF Downloads 389
4753 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 130
4752 Numerical Investigation of Solid Subcooling on a Low Melting Point Metal in Latent Thermal Energy Storage Systems Based on Flat Slab Configuration

Authors: Cleyton S. Stampa

Abstract:

This paper addresses the perspectives of using low melting point metals (LMPMs) as phase change materials (PCMs) in latent thermal energy storage (LTES) units, through a numerical approach. This is a new class of PCMs that has been one of the most prospective alternatives to be considered in LTES, due to these materials present high thermal conductivity and elevated heat of fusion, per unit volume. The chosen type of LTES consists of several horizontal parallel slabs filled with PCM. The heat transfer fluid (HTF) circulates through the channel formed between each two consecutive slabs on a laminar regime through forced convection. The study deals with the LTES charging process (heat-storing) by using pure gallium as PCM, and it considers heat conduction in the solid phase during melting driven by natural convection in the melt. The transient heat transfer problem is analyzed in one arbitrary slab under the influence of the HTF. The mathematical model to simulate the isothermal phase change is based on a volume-averaged enthalpy method, which is successfully verified by comparing its predictions with experimental data from works available in the pertinent literature. Regarding the convective heat transfer problem in the HTF, it is assumed that the flow is thermally developing, whereas the velocity profile is already fully developed. The study aims to learn about the effect of the solid subcooling in the melting rate through comparisons with the melting process of the solid in which it starts to melt from its fusion temperature. In order to best understand this effect in a metallic compound, as it is the case of pure gallium, the study also evaluates under the same conditions established for the gallium, the melting process of commercial paraffin wax (organic compound) and of the calcium chloride hexahydrate (CaCl₂ 6H₂O-inorganic compound). In the present work, it is adopted the best options that have been established by several researchers in their parametric studies with respect to this type of LTES, which lead to high values of thermal efficiency. To do so, concerning with the geometric aspects, one considers a gap of the channel formed by two consecutive slabs, thickness and length of the slab. About the HTF, one considers the type of fluid, the mass flow rate, and inlet temperature.

Keywords: flat slab, heat storing, pure metal, solid subcooling

Procedia PDF Downloads 132
4751 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia

Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim

Abstract:

This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.

Keywords: evaporative cooling, vapor compression, electricity consumption, CO2 emission

Procedia PDF Downloads 423
4750 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks

Authors: Rei-Heng Cheng, Wen-Pinn Fang

Abstract:

A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.

Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks

Procedia PDF Downloads 384
4749 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis

Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone

Abstract:

The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21C and 25C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.

Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing

Procedia PDF Downloads 162
4748 Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling.

Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hot rolling

Procedia PDF Downloads 309
4747 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 387
4746 Oral Health of Tobacco Chewers: A Cross-Sectional Study in Karachi, Pakistan

Authors: Warsi A. Ibrahim, Qureshi A. Ambrina, Younus M. Anjum

Abstract:

Introduction: Oral lesions related to commercially available Smokeless Tobacco (ST), such as, Pan, Gutka, Mahwa, Naswar is considered a serious challenge for dental health care providers in Pakistan. Majority of labored Pakistani population consume ST, where public transporters and drivers are no exception. It was necessary to identify individuals of this particular population group and screen their oral health and early signs of pre-cancerous lesions so that appropriate preventive measures could be taken to reduce the burden on health providers. Aim of Study: To estimate Prevalence of ST consumption and perception of use, and to evaluate Oral Health status among public drivers of Karachi. Material & methods: A cross-sectional study survey was conducted over duration of 2 months, through convenient sampling. Sample size (n=615) of public drivers (age > 18 years) all over Karachi was gathered. A structured proforma was used to record socio-demographics, addiction profile, perception of use and oral health status (oral lesions, oral sub-mucosal fibrosis and dental caries) of study participants. Data was entered and analyzed using SPSS version 16.0 using descriptive statistics only. Results: Prevalence of ST consumption among the study participants was figured to 92.5%. Out of these almost 70% suffered from one or the other form of oral lesion(s). Four major types of ST consumption were observed out of which 60 % of oral lesion were related to Gutka chewers showing early signs of oral cancer. In addition, occurrence of Oral sub-mucosal fibrosis (OSF) was found to be significantly high around 54.8%. Overall dental caries status was also high, showing on an average 5 teeth of an individual were decayed, missing or filled deviating from WHO normal criteria (mean < 3). It was thus proven from the study that public drivers relied on oral tobacco consumption because it helps them ‘Improve consciousness’ (p-value: < 0.01; using chi-square test). Multivariate analysis showed that there were higher prevalence of smokeless tobacco among highway drivers versus local drivers (A.O.R: 2.82 [0.83-9.61], p-value: < 0.01) Conclusion: Smokeless tobacco (ST) consumption has a direct effect on oral health. However, the type of ST, the duration of consumption are factors which are directly related to the severity. Moreover, Gutka may be considered as having most lethal effects on oral health which may lead to oral cancer and affect individual’s quality of life. Specific preventive programs must be undertaken to reduce the consumption of Gutka among public transporters and drivers.

Keywords: smokeless tobacco, oral lesions, drivers, public transporters

Procedia PDF Downloads 301
4745 Finite Element Simulation of Limiting Dome Height Test on the Formability of Aluminium Tailor Welded Blanks

Authors: Lakhya Jyoti Basumatary, M. J. Davidson

Abstract:

Tailor Welded Blanks (TWBs) have established themselves to be a revolutionary and foremost integral part of the automotive and aerospace industries. Metals sheets with varied thickness, strength and coatings are welded together to form TWBs through friction stir welding and laser welding prior to stamping operations. The formability of the TWBs completely varies from those of conventional blanks due to the diverse strength levels of individual sheets which are made to deform under the same forming load uniformly throughout causing unequal and unsatisfactory deformation in the blank. Limiting Dome Height(LDH) test helps predicting the formability of each blanks and assists in determining the appropriate TWB. Finite Element Simulation of LDH test for both base material and TWBs was performed and analysed for both before and after the solution heat treatment. The comparison and validation of simulation results are done with the experimental data and correlated accordingly. The formability of solution heat treated TWBs had enhanced than those of blanks made from non-heat treated TWBs.

Keywords: tailor welded blanks, friction stir welding, limiting dome height test, finite element simulation

Procedia PDF Downloads 213
4744 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 285
4743 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux

Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh

Abstract:

In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.

Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media

Procedia PDF Downloads 463
4742 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method

Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir

Abstract:

The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.

Keywords: laminar forced convection, lbm, triangular prism

Procedia PDF Downloads 364
4741 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 254
4740 Influence of Alcohol Consumption on Attention in Wistar Albino Rats

Authors: Adekunle Adesina, Dorcas Adesina

Abstract:

This Research investigated the influence of alcohol consumption on attention in Wister albino rats. It was designed to test whether or not alcohol consumption affected visual and auditory attention. The sample of this study comprise of 3males albino rats and 3 females albino rats which were randomly assigned to 3 (male/female each) groups, 1, 2 and 3. The first group which was experimental Group 1 received 4ml of alcohol ingestion with cannula twice daily (morning and evening). The second group which was experimental group 2 received 2ml of alcohol ingestion with cannula twice daily (morning and evening). Third group which was the control group only received water (placebo), all these happened within a period of 2 days. Three hypotheses were advanced and testedf in the study. Hypothesis 1 stated that there will be no significant difference between the response speed of albino rats that consume alcohol and those that consume water on visual attention using 5-CSRTT. This was confirmed (DF (2, 9) = 0.72, P <.05). Hypothesis 2 stated that albino rats who consumed alcohol will perform better than those who consume water on auditory accuracy using 5-CSRTT. This was also tested but not confirmed (DF (2, 9) = 2.10, P< .05). The third hypothesis which stated that female albino rats who consumed alcohol would not perform better than male albino rats who consumed alcohol on auditory accuracy using 5-CSRTT was tested and not confirmed. (DF (4) = 0.17, P < .05). Data was analyzed using one-way ANOVA and T-test for independent measures. It was therefore recommended that government policies and programs should be directed at reducing to the barest minimum the rate of alcohol consumption especially among males as it is detrimental to the human auditory attentional organ.

Keywords: alcohol, attention, influence, rats, Wistar

Procedia PDF Downloads 253
4739 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 378
4738 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material

Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya

Abstract:

The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.

Keywords: corrugated sandwich panel, fire-reaction properties, plywood, renewable material

Procedia PDF Downloads 149
4737 Effect of Carbon Nanotubes on Thermophysical Properties of Photothermal Fluid and Enhancement of Photothermal Deflection Signal

Authors: Muhammad Shafiq Ahmed, Sabastine Ezugwu

Abstract:

Thermophysical properties of Carbon Tetrachloride (CCl₄), a photothermal fluid used frequently in Photothermal Deflection Spectroscopy (PDS), containing different volume fractions of single walled carbon nanotube (SWCNTs) and their effect on the amplitude of PDS signal are investigated. It is found that the presence of highly thermally conducting SWCNTs in CCl₄ enhances the heat transfer from heated sample to the adjoining photothermal fluid, resulting in an increase in the intensity of amplitude of PDS signal. With the increasing volume fraction of SWCNTs in CCl₄, the amplitude of PDS signal is nearly doubled for volume fraction fopt =3.7X10⁻³ %., after that the signal drops with a further increase in the fraction of SWCNTs. It is shown that the use of highly thermally conducting carbon nanotubes enhances the heat exchange coefficient between the heated sample surface and adjoining fluid, resulting to an enhancement of PDS signal and consequently the improvement in the sensitivity of PDS technique.

Keywords: carbon nanotubes, heat transfer, nanofluid, photothermal deflection spectroscopy, thermophysical properties

Procedia PDF Downloads 149
4736 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, designbuilder

Procedia PDF Downloads 191
4735 Investigation on Phase Change Device for Satellite Thermal Control

Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen

Abstract:

With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this study

Keywords: phase change material (PCM), thermal control, solidification, supercooling

Procedia PDF Downloads 379
4734 Heuristics for Optimizing Power Consumption in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.

Keywords: heuristics, optimization, smart grid, peak demand, power supply

Procedia PDF Downloads 82
4733 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 300
4732 Attitude towards the Consumption of Social Media: Analyzing Young Consumers’ Travel Behavior

Authors: Farzana Sharmin, Mohammad Tipu Sultan, Benqian Li

Abstract:

Advancement of new media technology and consumption of social media have altered the way of communication in the tourism industry, mostly for consumers’ travel planning, online purchase, and experience sharing activity. There is an accelerating trend among young consumers’ to utilize this new media technology. This paper aims to analyze the attitude of young consumers’ about social media use for travel purposes. The convenience random sample method used to collect data from an urban area of Shanghai (China), consists of 225 young consumers’. This survey identified behavioral determinants of social media consumption by the extended theory of planned behavior (TPB). The instrument developed support on previous research to test hypotheses. The results of structural analyses indicate that attitude towards the use of social media is affected by external factors such as availability and accessibility of technology. In addition, subjective norm and perceived behavioral control have partially influenced the attitude of respondents’. The results of this study could help to improve social media travel marketing and promotional strategies for respective groups.

Keywords: social media, theory of planned behavior, travel behavior, young consumer

Procedia PDF Downloads 183
4731 The Investigation of Niobium Addition on Mechanical Properties of Al11Si alloy

Authors: Kerem Can Dizdar, Semih Ateş, Ozan Güler, Gökhan Basman, Derya Dışpınar, Cevat Fahir Arısoy

Abstract:

Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrementfrom 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys. Grain refinement and obtaining homogeneous microstructure is the key parameter in casting of aluminum alloys. Ti has been traditionally used as grain refiner, however, inconsistency and heterogeneous dendrite arms, as well as fading efficiency, have been the drawbacks of Ti. Alternatively, Nb (Niobium) has gained attention. In this work, the effect of Nb was investigated in case of both as cast and T6 heat treated conditions. Different ratios of Nb (0.0, 0.03, 0.05, 0.07, 0.1 weight%) were added to AlSi11 alloy, mechanical properties were examined statistically, and relationship was established between microstructure and mechanical properties by examining the grain size and dendrite characteristics before and after heat treatment. Results indicate that in the case of as cast state; with the increasing addition of Nb has no significant effect on yield strength, however, it increases the tensile strength and elongation starting with 0.05wt% ratio, and it remains constant up to 0.1wt%. For the heat-treated condition; Nb addition provides increment at yield strength and tensile strength up to 0.05wt%, but it leads to decrement from 0.05 to 0.1wt%. The opposite is valid for the elongation; It decreases in between 0-0.05wt% then rises in range of 0.05-0.1wt%. Highest yield strength and ultimate tensile strength were found T6 heat treated 0.05wt% Nb addition. 0.05wt% was found as critical Nbaddition ratio for mechanical properties of Al-11Si alloys.

Keywords: al-si alloy, grain refinement, heat treatment, mechanical properties, microstructure, niobium, sand casting

Procedia PDF Downloads 141
4730 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization

Authors: Silas A. Ihedioha

Abstract:

In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.

Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle

Procedia PDF Downloads 215
4729 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 157
4728 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier

Authors: M. V. Rane, Tareke Tekia

Abstract:

Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration

Procedia PDF Downloads 344
4727 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 459