Search results for: climate smart agriculture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5071

Search results for: climate smart agriculture

3811 Impacts of Climate Change on Water Resources Management in the Mahi River Basin of India

Authors: Y. B. Sharma, K. B. Biswas

Abstract:

This research project examines a 5000 cal yr BP sediment core record to reveal the consequences of human impact and climate variability on the tropical dry forests of the Mahi river basin, western India. To date there has been little research to assess the impact of climate variability and human impact on the vegetation dynamics of this region. There has also been little work to link changes in vegetation cover to documented changes in the basin hydrology over the past 100 years – although it is assumed that the two are closely linked. The key objective of this research project therefore is to understand the driving mechanisms responsible for the abrupt changes in the Mahi river basin as detailed in historical documentation and its impact on water resource management. The Mahi river basin is located in western India (22° 11’-24° 35’ N 72° 46’-74° 52’ E). Mahi river arises in the Malwa Plateau, Madhya Pradesh near Moripara and flows through the uplands and alluvial plain of Rajasthan and Gujarat provinces before draining into the Gulf of Cambay. Palaeoecological procedures (sedimentology, geochemical analysis, C&N isotopes and fossil pollen evidences) have been applied on sedimentary sequences collected from lakes in the Mahi basin. These techniques then facilitate to reconstruct the soil erosion, nutrient cycling, vegetation changes and climatic variability over the last 5000 years. Historical documentation detailing changes in demography, climate and landscape use over the past 100 years in this region will also be collated to compare with the most recent palaeoecological records. The results of the research work provide a detailed record of vegetation change, soil erosion, changes in aridity, and rainfall patterns in the region over the past 5000 years. This research therefore aims to determine the drivers of change and natural variability in the basin. Such information is essential for its current and future management including restoration.

Keywords: human impact, climate variability, vegetation cover, hydrology, water resource management, Mahi river basin, sedimentology, geochemistry, fossil pollen, nutrient cycling, vegetation changes, palaeoecology, aridity, rainfall, drivers of change

Procedia PDF Downloads 355
3810 Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture

Authors: Berk Kılıç, Ömer Aydın, Kerem Mestani, Defne Uzun

Abstract:

In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage.

Keywords: pesticide, garlic, black pepper, bio-pesticide

Procedia PDF Downloads 50
3809 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 384
3808 A Lost Tradition: Reflections towards Select Tribal Songs of Odisha

Authors: Akshaya K. Rath, Manjit Mahanta

Abstract:

The paper aims at examining the oral tradition of the Kondh and Oroan people of Odisha. Highlighting the translated versions of Kondh and Oroan songs—chiefly highlighting issues on agriculture—we argue that the relevance of these songs have fallen apart in the recent decades with the advancement of modern knowledge and thinking. What remains instead is a faint voice in the oral tradition that sings the past indigenous knowledge in the form of oral literature. Though there have been few attempts to document the rich cultural tradition by some individuals—Sitakant Mahapatra’s can be cited as an example—the need to document the tradition remains ever arching. In short, the thesis examines Kondh and Oroan “songs” and argues for a need to document the tradition. It also shows a comparative study on both the tribes on Agriculture which shows their cultural identity and a diversification of both the tribes in nature and how these tribal groups are associated with nature and the cycle of it.

Keywords: oral tradition, Meriah, folklore, karma, Oroan

Procedia PDF Downloads 449
3807 Climate Change and Its Impacts: The Case of Coastal Fishing Communities of the Meghna River in South-Central Bangladesh

Authors: Md. Royhanur Islam, Thomas Cansse, Md. Sahidul Islam, Atiqur Rahman Sunny

Abstract:

The geographical location of Bangladesh makes it one of the most vulnerable countries to climate change. Climate-induced phenomena mainly affect the south-central region of Bangladesh (Laxmipur district) where they have begun to occur more frequently. The aim of the study was to identify the hydro-climatic factors that lead to weather-related disasters in the coastal areas and analyse the consequences of these factors on coastal livelihoods, with possible adaptation options using participatory rural appraisal (PRA) tools. The present study showed several disasters such as land erosion, depressions and cyclones, coastal flooding, storm surge, and precipitation. The frequency of these disasters is of a noticeable rate. Surveys have also discovered that land erosion is ongoing. Tidal water is being introduced directly into the mainland, and as a result of the salt intrusion, production capacity is declining. The coastal belt is an important area for fishing activities, but due to changed fishing times and a lack of Alternative Income Generating Activities (AIGAs), people have been forced to search for alternative livelihood options by taking both short-term and long-term adaptation options. Therefore, in order to increase awareness and minimize the losses, vulnerable communities must be fully incorporated into disaster response strategies. The government as well as national and international donor organizations should come forward and resolve the present situation of these vulnerable groups since otherwise, they will have to endure endless and miserable suffering due to the effects of climate change ahead in their lives.

Keywords: adaptation, community, fishery development, livelihood

Procedia PDF Downloads 101
3806 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 29
3805 Social Media as a Distribution Channel for Thailand’s Rice Berry Product

Authors: Phutthiwat Waiyawuththanapoom, Wannapong Waiyawuththanapoom, Pimploi Tirastittam

Abstract:

Nowadays, it is a globalization era which social media plays an important role to the lifestyle as an information source, tools to connect people together and etc. This research is object to find out about the significant level of the social media as a distribution channel to the agriculture product of Thailand. In this research, the agriculture product is the Rice Berry which is the cross-bred unmilled rice producing dark violet grain, is a combination of Hom Nin Rice and Thai Jasmine/ Fragrant Rice 105. Rice Berry has a very high nutrition and nice aroma so the product is in the growth stage of the product cycle. The problem for the Rice Berry product in Thailand is the production and the distribution channel. This study is to confirm that the social media is another option as the distribution channel for the product which is not a mass production product. This will be the role model for the other niche market product to select the distribution channel.

Keywords: distribution, social media, rice berry, distribution channel

Procedia PDF Downloads 417
3804 Traditional Wisdom of Indigenous Vernacular Architecture as Tool for Climate Resilience Among PVTG Indigenous Communities in Jharkhand, India

Authors: Ankush, Harshit Sosan Lakra, Rachita Kuthial

Abstract:

Climate change poses significant challenges to vulnerable communities, particularly indigenous populations in ecologically sensitive regions. Jharkhand, located in the heart of India, is home to several indigenous communities, including the Particularly Vulnerable Tribal Groups (PVTGs). The Indigenous architecture of the region functions as a significant reservoir of climate adaptation wisdom. It explores the architectural analysis encompassing the construction materials, construction techniques, design principles, climate responsiveness, cultural relevance, adaptation, integration with the environment and traditional wisdom that has evolved through generations, rooted in cultural and socioeconomic traditions, and has allowed these communities to thrive in a variety of climatic zones, including hot and dry, humid, and hilly terrains to withstand the test of time. Despite their historical resilience to adverse climatic conditions, PVTG tribal communities face new and amplified challenges due to the accelerating pace of climate change. There is a significant research void that exists in assimilating their traditional practices and local wisdom into contemporary climate resilience initiatives. Most of the studies place emphasis on technologically advanced solutions, often ignoring the invaluable Indigenous Local knowledge that can complement and enhance these efforts. This research gap highlights the need to bridge the disconnect between indigenous knowledge and contemporary climate adaptation strategies. The study aims to explore and leverage indigenous knowledge of vernacular architecture as a strategic tool for enhancing climatic resilience among PVTGs of the region. The first objective is to understand the traditional wisdom of vernacular architecture by analyzing and documenting distinct architectural practices and cultural significance of PVTG communities, emphasizing construction techniques, materials and spatial planning. The second objective is to develop culturally sensitive climatic resilience strategies based on findings of vernacular architecture by employing a multidisciplinary research approach that encompasses ethnographic fieldwork climate data assessment considering multiple variables such as temperature variations, precipitation patterns, extreme weather events and climate change reports. This will be a tailor-made solution integrating indigenous knowledge with modern technology and sustainable practices. With the involvement of indigenous communities in the process, the research aims to ensure that the developed strategies are practical, culturally appropriate, and accepted. To foster long-term resilience against the global issue of climate change, we can bridge the gap between present needs and future aspirations with Traditional wisdom, offering sustainable solutions that will empower PVTG communities. Moreover, the study emphasizes the significance of preserving and reviving traditional Architectural wisdom for enhancing climatic resilience. It also highlights the need for cooperative endeavors of communities, stakeholders, policymakers, and researchers to encourage integrating traditional Knowledge into Modern sustainable design methods. Through these efforts, this research will contribute not only to the well-being of PVTG communities but also to the broader global effort to build a more resilient and sustainable future. Also, the Indigenous communities like PVTG in the state of Jharkhand can achieve climatic resilience while respecting and safeguarding the cultural heritage and peculiar characteristics of its native population.

Keywords: vernacular architecture, climate change, resilience, PVTGs, Jharkhand, indigenous people, India

Procedia PDF Downloads 61
3803 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 104
3802 The Impact of Climate Change on Sustainable Aquaculture Production

Authors: Peyman Mosberian-Tanha, Mona Rezaei

Abstract:

Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.

Keywords: aquaculture, climate change, sustainability, salmonids

Procedia PDF Downloads 163
3801 The Features of Formation of Russian Agriculture’s Sectoral Structure

Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova

Abstract:

The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.

Keywords: Russian agricultural sectors, sectoral structure, organizational and economic structure, structural changes

Procedia PDF Downloads 154
3800 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 268
3799 Energy Saving of the Paint with Mineral Insulators: Simulation and Study on Different Climates

Authors: A. A. Azemati, H. Hosseini, B. Shirkavand Hadavand

Abstract:

By using an adequate thermal barrier coating in buildings the energy saving will be happened. In this study, a range of wall paints with different absorption coefficient in different climates has been investigated. In order to study these effects, heating and cooling loads of a common building with different ordinary paints and paint with mineral coating have been calculated. The effect of building paint in different climatic condition was studied and comparison was done between ordinary paints and paint with mineral insulators in temperate climate to obtain optimized energy consumption. The results have been shown that coatings with inorganic micro particles as insulation reduce the energy consumption of buildings around 14%.

Keywords: climate, energy consumption, inorganic, mineral coating

Procedia PDF Downloads 255
3798 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security

Authors: Chia-Chi Chang

Abstract:

Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.

Keywords: wireless sensor network, battery-driven, sleep mode, home security

Procedia PDF Downloads 289
3797 Physical Planning Strategies for Disaster Mitigation and Preparedness in Coastal Region of Andhra Pradesh, India

Authors: Thimma Reddy Pothireddy, Ramesh Srikonda

Abstract:

India is prone to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides frequently due to its geographical considerations. It has become a persistent phenomenon as observed in last ten decades. The recent survey indicates that about 60% of the landmass is prone to earthquakes of various intensities with reference to Richard scale, over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is vulnerable to drought. Climate change is likely to be perceived through the experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc. The recent natural calamities such as Cyclone Hudhud had crossed the land at Northern cost of AP, Vishakapatanam on 12 Oct’2014 with a wind speed ranging between 175 – 200 kmph and the records show that the tidal waves were reached to the height of 14mts and above; and it alarms us to have critical focus on planning issues so as to find appropriate solutions. The existing condition is effective is in terms of institutional set up along with responsive management mechanism of disaster mitigation but considerations at settlement planning level to allow mitigation operations are not adequate. This paper deals to understand the response to climate change will possibly happen through adaptation to climate hazards and essential to work out an appropriate mechanism and disaster receptive settlement planning for responding to natural (and climate-related) calamities particularly to cyclones and floods. The statistics indicate that 40 million hectares flood prone (5% of area), and 1853 kmts of cyclone prone coastal length in India so it is essential and crucial to have appropriate physical planning considerations to improve preparedness and to operate mitigation measures effectively to minimize the loss and damage. Vijayawada capital region which is susceptible to cyclonic and floods has been studied with respect to trajectory analysis to work out risk vulnerability and to integrated disaster mitigation physical planning considerations.

Keywords: meta analysis, vulnerability index, physical planning, trajectories

Procedia PDF Downloads 234
3796 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia

Authors: Ahsan Abdullah, Ahmed A. S. Bakshwain

Abstract:

Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population.

Keywords: prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity

Procedia PDF Downloads 301
3795 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui

Abstract:

Technological advances in the construction sector are helping to make smart cities a reality by means of cyber-physical systems (CPS). CPS integrate information and the physical world through the use of information communication technologies (ICT). An increasingly common goal in the built environment is to integrate building information models (BIM) with the Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation, and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts, and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) how suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) what are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities, and cybersecurity. The results of these findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Keywords: BIM, cybersecurity, digital twins, IoT, urban cities

Procedia PDF Downloads 147
3794 Agritourism Development Mode Study in Rural Area of Boshan China

Authors: Lingfei Sun

Abstract:

Based on the significant value of ecology, the strategic planning for ecological civilization construction was mentioned in the 17th and 18th National Congress of the Communist Party of China. How to generate economic value based on the environmental capacity is not only an economic decision but also a political decision to make. Boshan took the full use of “Ecology” and transformed it as an inexhaustible green resource to benefit people, reflecting the sustainable value of new agriculture development mode. The Strawberry Harvest Festival and Blueberry Harvest Festival hosted approximately 96,000 and 54,000 leisure tourists respectively in 2014. For the Kiwi Harvest Festival in August 2014, in average, it attracted about 4600 tourists per day, which generated daily kiwi sales of 50,000 lbs and 3 million RMB (About 476,000 USD) of daily revenue. The purpose of this study is to elaborate the modes of agritourism development, by analyzing the cases in rural area of Boshan, China. Interviews with the local government officers were applied to discover operation mode of agritourism operation. The financial data was used to demonstrate the strength of government policy and improvement of the income of rural people. The result indicated that there are mainly three types of modes: the Intensive Mode, the Model Mode and the Mixed Mode, supported by case study respectively. With the boom of tourism, the development of agritourism in Boshan relies on the agriculture encouraging policy of China and the effort of local government; meanwhile, large scale of cultivation and the product differentiation are the crucial elements for the success of rural agritourism projects.

Keywords: agriculture, agritourism, economy, rural area development

Procedia PDF Downloads 286
3793 The Influences of Green Infrastructure Develop on Urban Renewals for Real Essence and Non-Real Essence Economic Value

Authors: Chao Jen-Chih, Hsu Kuo-Wei

Abstract:

Climate change and natural disasters take effect on urban development. It has been discussed urban renewals can prevent natural disasters. Integrating green infrastructure and urban renewals may have great effect on adapting the impact of climate change. To highlight the economic value of green infrastructure development on urban renewals, some strategies need to be carry on to reduce environmental impact. A number of urban renewals studies has been conducted on right transfer, financial risk, urban renewal policy, and public participation. Little research has been devoted on the subject of the economic value of green infrastructure development on urban renewals. The purpose of this study is to investigate the affecting factors on the economic value of green infrastructure development on urban renewals. This study will present the benefits of green infrastructure development and summarize the critical factors of green infrastructure develop on urban renewals for real essence and non-real essence on economic value from literature. Our results indicate that factors of housing price, land value, floor area incentive, and facilitation of the construction industry affect the outcome of real essence economic value. Factors of enhancement of urban disaster prevention, improvement of urban environment and landscape, crime reduction, climate control, pollution reduction, biological diversity, health impacts, and leisure space affects the outcome of non-real essence economic value.

Keywords: economic value, green infrastructure, urban renewals, urban development

Procedia PDF Downloads 397
3792 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation

Procedia PDF Downloads 457
3791 Metaverse in Future Personal Healthcare Industry: From Telemedicine to Telepresence

Authors: Mohammed Saeed Jawad

Abstract:

Metaverse involves the convergence of three major technologies trends of AI, VR, and AR. Together these three technologies can provide an entirely new channel for delivering healthcare with great potential to lower costs and improve patient outcomes on a larger scale. Telepresence is the technology that allows people to be together even if they are physically apart. Medical doctors can be symbolic as interactive avatars developed to have smart conversations and medical recommendations for patients at the different stages of the treatment. Medical digital assets such as Medical IoT for real-time remote healthcare monitoring as well as the symbolic doctors’ avatars as well as the hospital and clinical physical constructions and layout can be immersed in extended realities 3D metaverse environments where doctors, nurses, and patients can interact and socialized with the related digital assets that facilitate the data analytics of the sensed and collected personal medical data with visualized interaction of the digital twin of the patient’s body as well as the medical doctors' smart conversation and consultation or even in a guided remote-surgery operation.

Keywords: personal healthcare, metaverse, telemedicine, telepresence, avatar, medical consultation, remote-surgery

Procedia PDF Downloads 117
3790 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 43
3789 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 117
3788 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 54
3787 Development and Performance of Aerobic Granular Sludge at Elevated Temperature

Authors: Mustafa M. Bob, Siti Izaidah Azmi, Mohd Hakim Ab Halim, Nur Syahida Abdul Jamal, Aznah Nor-Anuar, Zaini Ujang

Abstract:

In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia.

Keywords: aerobic granular sludge, hot climate, sequencing batch reactor, domestic wastewater treatment

Procedia PDF Downloads 341
3786 Immigration Solutions for the United States

Authors: Philip Robert Alldritt

Abstract:

The continuing increase in human migration is at crisis levels in all areas of the planet. The causes are varied, and the risks are high for the migrants. Migration has been ongoing since the beginning of human emergence on the planet, but for the first time in our historic memory has the, migration reached this level of critical mass. The causes are many. Climate collapse, economic opportunity, drug cartel activity, political upheaval, and gang wars. Many locations are seemingly “within reach” of the migrants, and the push factors are so loaded with hopelessness that almost anyone would be willing to risk anything to improve their conditions. There is no argument about that mass migrations are occurring and will increase in the future. The solutions to this increase are complex. This paper will examine the causes of migration and attempt to provide some reasonable solutions to mitigate the migrations with equitable outcomes that may guide immigration policy in impacted areas.

Keywords: immigration, crisis, climate, cartels

Procedia PDF Downloads 51
3785 Challenges and Problems of the Implementation of the Individual's Right to a Safe and Clean Environment

Authors: Dalia Perkumiene

Abstract:

The process of globalization has several unforeseen negative effects on the quality of the environment, including increased pollution, climate change, and the depletion and destruction of natural resources. The impact of these processes makes it difficult to guarantee citizens' rights to a clean environment, and complex legal solutions are needed to implement this right. In order to implement human rights in a clean and safe environment, international legal documents and court rulings are analyzed. It is important to find a balance between the legal context: the right to a clean environment and environmental challenges such as climate change and global warming. Research Methods: The following methods were used in this study: analytical, analysis, and synthesis of scientific literature and legal documents, comparative analysis of legal acts, and generalization. Major Findings: It is difficult to implement the right to a clean, safe and sustainable environment. The successful implementation of this right depends on the application of various complex ideas and rational, not only legal solutions. Legislative measures aim to maximize the implementation of citizens' rights in the face of climate change and other environmental challenges. This area remains problematic, especially in international law. Concluding Statement: The right to a clean environment should allow a person to live in a harmonious system, where environmental factors do not pose a risk to human health and well-being.

Keywords: clean and safe and clean environmen, environmen, persons’ rights, right to a clean and safe and clean environment

Procedia PDF Downloads 176
3784 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions

Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer

Abstract:

The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.

Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping

Procedia PDF Downloads 200
3783 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile

Authors: Fikru Fentaw Abera

Abstract:

Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.

Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE

Procedia PDF Downloads 343
3782 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats

Authors: Ivan Župan

Abstract:

Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.

Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology

Procedia PDF Downloads 57