Search results for: artificial communication
4894 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe
Authors: Ahmad Haidar
Abstract:
Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market
Procedia PDF Downloads 774893 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities
Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos
Abstract:
This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.Keywords: requirements analysis, distributed requirements engineering, practical experiences, collaborative support
Procedia PDF Downloads 2044892 The EU’s Role in Exporting Digital Privacy and Security Standards: A Legal Framework for Global Normative Diffusion
Authors: Yuval Reinfeld
Abstract:
This paper explores the European Union’s expanding influence as a global regulatory power, particularly in the realms of legal, security, and privacy challenges within the digital landscape. As digital regulation becomes increasingly vital, the EU has positioned itself as a leading exporter of privacy and cybersecurity standards through landmark frameworks like the General Data Protection Regulation (GDPR), the Artificial Intelligence Act (AIA), and the Digital Services Act (DSA). These regulations have set global benchmarks, extending their influence well beyond Europe’s borders by shaping legal frameworks in third countries and guiding the development of global digital governance. Central to this regulatory diffusion is the European Court of Justice (CJEU), whose rulings consistently reinforce and extend the reach of EU standards on an international scale. Through mechanisms such as trade agreements, adequacy decisions, and multilateral cooperation, the EU has constructed a regulatory ecosystem that other jurisdictions increasingly adopt. This paper investigates key CJEU cases to illustrate how the EU’s legal instruments in privacy, security, and AI contribute to its role as a global standard-setter. By examining the intersection of digital governance, international law, and normative power, this research provides a thorough analysis of the EU’s regulatory impact on global privacy, cybersecurity, and AI frameworks.Keywords: digital privacy, cybersecurity, GDPR, European Union Law, artificial intelligence, global normative power
Procedia PDF Downloads 274891 Governance of Climate Adaptation Through Artificial Glacier Technology: Lessons Learnt from Leh (Ladakh, India) In North-West Himalaya
Authors: Ishita Singh
Abstract:
Social-dimension of Climate Change is no longer peripheral to Science, Technology and Innovation (STI). Indeed, STI is being mobilized to address small farmers’ vulnerability and adaptation to Climate Change. The experiences from the cold desert of Leh (Ladakh) in North-West Himalaya illustrate the potential of STI to address the challenges of Climate Change and the needs of small farmers through the use of Artificial Glacier Techniques. Small farmers have a unique technique of water harvesting to augment irrigation, called “Artificial Glaciers” - an intricate network of water channels and dams along the upper slope of a valley that are located closer to villages and at lower altitudes than natural glaciers. It starts to melt much earlier and supplements additional irrigation to small farmers’ improving their livelihoods. Therefore, the issue of vulnerability, adaptive capacity and adaptation strategy needs to be analyzed in a local context and the communities as well as regions where people live. Leh (Ladakh) in North-West Himalaya provides a Case Study for exploring the ways in which adaptation to Climate Change is taking place at a community scale using Artificial Glacier Technology. With the above backdrop, an attempt has been made to analyze the rural poor households' vulnerability and adaptation practices to Climate Change using this technology, thereby drawing lessons on vulnerability-livelihood interactions in the cold desert of Leh (Ladakh) in North-West Himalaya, India. The study is based on primary data and information collected from 675 households confined to 27 villages of Leh (Ladakh) in North-West Himalaya, India. It reveals that 61.18% of the population is driving livelihoods from agriculture and allied activities. With increased irrigation potential due to the use of Artificial Glaciers, food security has been assured to 77.56% of households and health vulnerability has been reduced in 31% of households. Seasonal migration as a livelihood diversification mechanism has declined in nearly two-thirds of households, thereby improving livelihood strategies. Use of tactical adaptations by small farmers in response to persistent droughts, such as selling livestock, expanding agriculture lands, and use of relief cash and foods, have declined to 20.44%, 24.74% and 63% of households. However, these measures are unsustainable on a long-term basis. The role of policymakers and societal stakeholders becomes important in this context. To address livelihood challenges, the role of technology is critical in a multidisciplinary approach involving multilateral collaboration among different stakeholders. The presence of social entrepreneurs and new actors on the adaptation scene is necessary to bring forth adaptation measures. Better linkage between Science and Technology policies, together with other policies, should be encouraged. Better health care, access to safe drinking water, better sanitary conditions, and improved standards of education and infrastructure are effective measures to enhance a community’s adaptive capacity. However, social transfers for supporting climate adaptive capacity require significant amounts of additional investment. Developing institutional mechanisms for specific adaptation interventions can be one of the most effective ways of implementing a plan to enhance adaptation and build resilience.Keywords: climate change, adaptation, livelihood, stakeholders
Procedia PDF Downloads 704890 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field
Authors: Zerroug Abdelhamid, Danielle Chassoux
Abstract:
Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering
Procedia PDF Downloads 3654889 Communicating Nuclear Energy in Southeast Asia: A Cross-Country Comparison of Communication Channels and Source Credibility
Authors: Shirley S. Ho, Alisius X. L. D. Leong, Jiemin Looi, Agnes S. F. Chuah
Abstract:
Nuclear energy is a contentious technology that has attracted much public debate over the years. The prominence of nuclear energy in Southeast Asia (SEA) has burgeoned due to the surge of interest and plans for nuclear development in the region. Understanding public perceptions of nuclear energy in SEA is pertinent given the limited number of studies conducted. In particular, five SEA nations – Singapore, Malaysia, Indonesia, Thailand, and Vietnam are of immediate interest as that they are amongst the most economically developed or developing nations in the SEA region. High energy demands from economic development in these nations have led to considerations of adopting nuclear energy as an alternative source of energy. This study aims to explore whether differences in the nuclear developmental stage in each country affects public perceptions of nuclear energy. In addition, this study seeks to find out about the type and importance of communication credibility as a judgement heuristic in facilitating message acceptance across these five countries. Credibility of a communication channel is a crucial component influencing public perception, acceptance, and attitudes towards nuclear energy. Aside from simply identifying the frequently used communication channels, it is of greater significance to understand public perception of source and media credibility. Given the lack of studies conducted in SEA, this exploratory study adopts a qualitative approach to elicit a spectrum of opinions and insights regarding the key communication aspects influencing public perceptions of nuclear energy. Specifically, the capitals of each of the abovementioned countries - Kuala Lumpur, Bangkok, and Hanoi - were selected, with the exception of Singapore, an island city-state, and Yogyakarta, the most populous island of Indonesia to better understand public perception towards nuclear energy. Focus group discussions were utilized as the mode of data collection to elicit a wide variety of viewpoints held by the participants, which is well-suited for exploratory research. In total, 156 participants took part in the 13 focus group discussions. The participants were either local citizens or permanent residents aged between 18 and 69 years old. Each of the focus groups consists of 8-10 participants, including both male and female participants. The transcripts from each focus group were analysed using NVivo 10, and the text was organised according to the emerging themes or categories. The general public in all the countries was familiar but had no in-depth knowledge with nuclear energy. Four dimensions of nuclear energy communication were identified based on the focus group discussions: communication channels, perceived credibility of sources, circumstances for discussion, and discussion style. The first dimension, communication channels refers to the medium through which participants receive information about nuclear energy. Four types of media emerged from the discussions. They included online and social media, broadcast media, print media, and word-of- mouth (WOM). Collectively, across all five countries, participants were found to engage in different types of knowledge acquisition and information seeking behavior depending on the communication channels used.Keywords: nuclear energy, public perception, communication, Southeast Asia, source credibility
Procedia PDF Downloads 3084888 Using Information and Communication Technologies in Teaching Translation: Students of English as a Case Study
Authors: Guessabi Fatiha
Abstract:
Nowadays, there is no sphere of human life that does not use Information and Communication Technologies (ICTs) in practice. This type of development grew widely in the last years of the 20th century and impacted many fields such as education, health, financing, job markets, communication, governments, industrial productivity, etc. Recently, in higher education, the use of ICTs has been essential and significant during the Covid19 pandemic. Thanks to technology, although the universities in Algeria were locked down during the period of covid19, learning was easily continued, and students were collaborating, communicating, socializing, and learning at a distance. Therefore, ICT tools are required in translation courses to enhance and improve translation teaching. This research explores the use of ICT in teaching and learning translation. The research comes along with a theoretical framework; the literature review is produced to highlight some essential ICT concepts and translation teaching. In order to achieve the study objective, a questionnaire is distributed to the third-year English LMD students at Tahri Mohamed University, and an interview is addressed to the translation teacher. The results and discussion obtained from this investigation confirmed the hypothesis and revealed that the use of ICT is essential in translation courses and it improves translation teaching. Hence, by using ICT in the classroom, the students become more active, and the teachers of translation become knowledge facilitators and leaders.Keywords: COVID19, ICT, learning, students, teaching, TMU, translation
Procedia PDF Downloads 1284887 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 914886 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)
Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko
Abstract:
Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.Keywords: attenuation, Ku-Band, microwave communication, rain rates
Procedia PDF Downloads 4874885 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 1134884 Fault Diagnosis in Confined Systems
Authors: Nesrine Berber, Hafid Haffaf, Abdel Madjid Meghabar
Abstract:
In the last decade, technology has continued to grow and has changed the structure of our society. Today, new technologies including the information and communication (ICT) play a main role which importance continues to grow, now it's become indispensable to the economic, social and cultural. Thus, ICT technology has proven to be as a promising intervention in the area of road transport. The supervision model of class of train of intelligent and autonomous vehicles leads us to give some defintions about IAV and the different technologies used for communication between them. Our aim in this work is to present an hypergraph modeling a class of train of Intelligent and Autonomous Vehicles (IAV).Keywords: intelligent transportation system, intelligent autonomous vehicles, Ad Hoc network, wireless technologies, hypergraph modeling, supervision
Procedia PDF Downloads 5474883 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 1254882 The Amorphousness of the Exposure Sphere
Authors: Nipun Ansal
Abstract:
People guard their beliefs and opinions with their lives. Beliefs that they’ve formed over a period of time, and can go to any lengths to defy, desist from, resist and negate any outward stimulus that has the potential to shake them. Cognitive dissonance is term used to describe it in theory. And every human being, in order to defend himself from cognitive dissonance applies 4 rings of defense viz. Selective Exposure, Selective Perception, Selective Attention, and Selective Retention. This paper is a discursive analysis on how the onslaught of social media, complete with its intrusive weaponry, has amorphized the external ring of defense: the selective exposure. The stimulus-response model of communication is one of the most inherent model that encompasses communication behaviours of children and elderly, individual and masses, humans and animals alike. The paper deliberates on how information bombardment through the uncontrollable channels of the social media, Facebook and Twitter in particular, have dismantled our outer sphere of exposure, leading users online to a state of constant dissonance, and thus feeding impulsive action-taking. It applies case study method citing an example to corroborate how knowledge generation has given in to the information overload and the effect it has on decision making. With stimulus increasing in number of encounters, opinion formation precedes knowledge because of the increased demand of participation and decrease in time for the information to permeate from the outer sphere of exposure to the sphere of retention, which of course, is through perception and attention. This paper discusses the challenge posed by this fleeting, stimulus rich, peer-dominated media on the traditional models of communication and meaning-generation.Keywords: communication, discretion, exposure, social media, stimulus
Procedia PDF Downloads 4094881 Design of a Commercial Off-the-Shelf Patch Antenna with Wide Half Power Beam Width for Global Navigation Satellite Systems Application
Authors: Mannahel Iftikhar, Sara Saeed, Iqra Faryad, Muhammad Subhan
Abstract:
This paper describes the design of a low-cost dual-band stacked rhombus-shaped slot patch antenna. The antenna is designed on L-band with a GPS (L2) bandwidth of 0.08 GHz centered at 1.207 GHz and a GPS (L1) bandwidth of 0.23 GHz centered at 1.575 GHz. The antenna’s dimensions are 8.02×8.02 cm². The antenna has a 3 dB beamwidth of 100° at 1.204 GHz and 117° at 1.575 GHz. The gain of this antenna is 6.5 dBi at 1.575 GHz and 6.43 dBi at 1.207 GHz. The antenna is designed using commercial off-the-shelf components and can be used in any global navigation satellite system receiver covering L1 and L2 communication bands.Keywords: circular polarization, enhanced beamwidth, stacked patches, GNSS, satellite communication
Procedia PDF Downloads 1214880 Written Narrative Texts as the Indicators of Communication Competence of Pupils and Students with Hearing Impairment in the Czech Language
Authors: Marie Komorna, Katerina Hadkova
Abstract:
One reason why hearing disabilities as compared to other disabilities are considered to be less serious, is the belief that deaf and hard of hearing persons can read and write without problems and can therefore fairly easily compensate for problems related to their limited ability to hear sound. However in reality this is not the case, especially as regards written Czech, deaf persons are often not able to communicate their message clearly to its recipients. Their inability to communicate fully in written language is one of the most severe problems facing a number of deaf persons, a problem which they face and which makes it difficult for them to function in a sound-based environment. Despite this fact, this issue is one which has been given only a minimum of attention in the Czech Republic. That is why we decided to focus our research on this issue, specifically targeting written communication of deaf pupils in primary and secondary schools. The paper summarizes the background and objectives of this research. The written work of deaf respondents was obtained in response to a narrative based on a series of images which depicted a continuous storyline. Based on an analysis of the obtained written work we tried to describe the specifics of the narrative abilities of the deaf authors of these texts. We also analyzed other aspects and specific traits of text written by deaf authors at a phonetic-phonological, lexical-semantic, morphological and syntactic, respectively pragmatic level. Based on the results of the project it will be possible to increase knowledge of the communication abilities of deaf persons in written Czech. The obtained data may be used during future research and for teaching purposes and/or education concepts for teaching Czech to deaf pupils.Keywords: communication competence, deaf, narrative, written texts
Procedia PDF Downloads 3394879 Fears of Strangers: Causes of Anonymity Rejection on Virtual World
Authors: Proud Arunrangsiwed
Abstract:
This research is a collaborative narrative research, which is mixed with issues of selected papers and researcher's experience as an anonymous user on social networking sites. The objective of this research is to understand the reasons of the regular users who reject to contact with anonymous users, and to study the communication traditions used in the selected studies. Anonymous users are rejected by regular users, because of the fear of cyber bully, the fear of unpleasant behaviors, and unwillingness of changing communication norm. The suggestion for future research design is to use longitudinal design or quantitative design; and the theory in rhetorical tradition should be able to help develop a strong trust message.Keywords: anonymous, anonymity, online identity, trust message, reliability
Procedia PDF Downloads 3604878 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 1794877 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 814876 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 1214875 Self-Efficacy Perceptions of Pre-Service Art and Music Teachers towards the Use of Information and Communication Technologies
Authors: Agah Tugrul Korucu
Abstract:
Information and communication technologies have become an important part of our daily lives with significant investments in technology in the 21st century. Individuals are more willing to design and implement computer-related activities, and they are the main component of computer self-efficacy and self-efficacy related to the fact that the increase in information technology, with operations in parallel with these activities more successful. The Self-efficacy level is a significant factor which determines how individuals act in events, situations and difficult processes. It is observed that individuals with higher self-efficacy perception of computers who encounter problems related to computer use overcome them more easily. Therefore, this study aimed to examine self-efficacy perceptions of pre-service art and music teachers towards the use of information and communication technologies in terms of different variables. Research group consists of 60 pre-service teachers who are studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education Art and Music department. As data collection tool of the study; “personal information form” developed by the researcher and used to collect demographic data and "the perception scale related to self-efficacy of informational technology" are used. The scale is 5-point Likert-type scale. It consists of 27 items. The Kaiser-Meyer-Olkin (KMO) sample compliance value is found 0.959. The Cronbach alpha reliability coefficient of the scale is found to be 0.97. computer-based statistical software package (SPSS 21.0) is used in order to analyze the data collected by data collection tools; descriptive statistics, t-test, analysis of variance are used as statistical techniques.Keywords: self-efficacy perceptions, teacher candidate, information and communication technologies, art teacher
Procedia PDF Downloads 3264874 Craftwork Sector of Tangier: Cooperation, Communication and New Opportunities
Authors: María García-García, Esther Simancas-González, Said Balhadj, Carmen Silva-Robles, Driss Ferhane
Abstract:
Cooperation between the territories on both sides of the Strait of Gibraltar is an urgent reality. the south of Spain and northern Morocco share a common historical past and belong to a very similar geographical and ecological area. Economic, social and cultural relations make cooperation between the two countries’ (Spain and Morocco) a priority for the EU and both countries governments. Likewise, deepened changes happened in production systems and consumption patterns had seriously damaged and weakened the craftwork sector. The promotion of local crafts, and its economic value, and the cooperation with the north of Morocco has been an important issue for the Andalusian government in recent years. The main aim of this work is to understand the strengths and weaknesses of the Tangier - Tetuan region craftworks sector in order to develop accurate communication and promotion plans. From the knowledge of the real identity, the sector could be repositioned. Promotion and communication could be a spur to traditional sectors, such as crafts. Competitiveness requires "the culture of communication, the cooperation between different companies to build powerful territory brands and maintain the establishment confidence and effectiveness relationships among agencies and organizations". The lack of previous literature addressing how Tangier craftwork promote and communicate its value to their stakeholders, has conducted the study to an exploratory approach with a double dimension: internal, Tangier craftwork sector image, and external, Andalusia image of the sector in Tangier. Different interviews were conducted with Andalusian partners involved in the artisanal sector (9 master craftsmen and 3 institutions) and focus groups with 9 Tangiers craftsmen were developed. The result of these interviews and expert groups are reflected in a SWOT analysis which reveals a handcraft industry with a worrying wide-spread and undifferentiated identity and reluctance to innovation and new technologies.Keywords: communication management, image, Moroccan crafts, Spain-Morocco cooperation
Procedia PDF Downloads 3294873 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 194872 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 684871 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2394870 Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition
Authors: Wilson Enríquez, Daniel Cardenas
Abstract:
This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No).Keywords: multi-carrier system (5G), filter bank, polyphase decomposition, FIR equalizer
Procedia PDF Downloads 2044869 Impact of Mhealth Tools on Psycho-Social Predictors of Behaviour Regarding Contraceptive Use
Authors: Preeti Tiwari, Jay Wood, Duncan Babbage
Abstract:
Family planning plays a role in saving lives across the globe by preventing unwanted pregnancies. The purpose of this multidisciplinary research was to determine the impact of mHealth tools have on psychosocial determinants of behaviour for family planning. The present study examines a topic that is very relevant in times where human-technology interaction is at its peak. It is probably one of the first studies that have investigated the impact of mobile phone technology on the underlying mechanisms of behaviour change for family planning using primary data. To examine the association between exposure to mHealth tools and predictors of behaviour, data was collected from mHealth intervention areas in India. A post-intervention quasi-experimental study with a 2x2 factorial design was conducted among 831 men and women from the state of Bihar. The quantitative data analysis evaluated the extent of influence that predictors of behaviour (beliefs, social norms, perceived behaviour control, and outcome behaviour) have on a woman’s decisions about family planning. The results indicated an association between exposure to mHealth tools and improved communication about family planning among various family members after receiving health information from a health worker (H1). A relationship between exposure to mHealth tools and increased support women received from their husbands and extended family (mothers-in-law specifically) and peers (H2) was also found. A further result showed that knowledge about family planning was greater among users of family planning (H4). mHealth tools empower women to communicate with family members. This has important implications for developing mobile phone-based tools, as they can be used as a crucial communication channel that can be an effective method of increasing communication among family members about contraceptives. Thus, it can be implied that where women feel nervous talking about contraception, the successful application of mHealth tools can strengthen the interactivity of the health communication and could increase the likelihood of using contraception. However, while it may improve health communication that can inform health decisions, it may be insufficient on its own to cause behaviour change.Keywords: contraceptive, e-health, psycho-social, women
Procedia PDF Downloads 1224868 Prediction of Road Accidents in Qatar by 2022
Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa
Abstract:
There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.Keywords: road safety, prediction, accident, model, Qatar
Procedia PDF Downloads 2584867 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 944866 Smart Signature - Medical Communication without Barrier
Authors: Chia-Ying Lin
Abstract:
This paper explains how to enhance doctor-patient communication and nurse-patient communication through multiple intelligence signing methods and user-centered. It is hoped that through the implementation of the "electronic consent", the problems faced by the paper consent can be solved: storage methods, resource utilization, convenience, correctness of information, integrated management, statistical analysis and other related issues. Make better use and allocation of resources to provide better medical quality. First, invite the medical records department to assist in the inventory of paper consent in the hospital: organising, classifying, merging, coding, and setting. Second, plan the electronic consent configuration file: set the form number, consent form group, fields and templates, and the corresponding doctor's order code. Next, Summarize four types of rapid methods of electronic consent: according to the doctor's order, according to the medical behavior, according to the schedule, and manually generate the consent form. Finally, system promotion and adjustment: form an "electronic consent promotion team" to improve, follow five major processes: planning, development, testing, release, and feedback, and invite clinical units to raise the difficulties faced in the promotion, and make improvements to the problems. The electronic signature rate of the whole hospital will increase from 4% in January 2022 to 79% in November 2022. Use the saved resources more effectively, including: reduce paper usage (reduce carbon footprint), reduce the cost of ink cartridges, re-plan and use the space for paper medical records, and save human resources to provide better services. Through the introduction of information technology and technology, the main spirit of "lean management" is implemented. Transforming and reengineering the process to eliminate unnecessary waste is also the highest purpose of this project.Keywords: smart signature, electronic consent, electronic medical records, user-centered, doctor-patient communication, nurse-patient communication
Procedia PDF Downloads 1264865 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 154