Search results for: twin therapeutic approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15240

Search results for: twin therapeutic approach

14010 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 411
14009 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology

Procedia PDF Downloads 242
14008 Optimization of the Numerical Fracture Mechanics

Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej

Abstract:

In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.

Keywords: fracture mechanics, optimization, variation approach, mechanic

Procedia PDF Downloads 606
14007 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development

Procedia PDF Downloads 244
14006 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch

Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale

Abstract:

Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.

Keywords: blend, compatibilizer, polyethylene, thermoplastic starch

Procedia PDF Downloads 440
14005 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents

Authors: Sutapa Mondal Roy, Suban K. Sahoo

Abstract:

The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.

Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery

Procedia PDF Downloads 385
14004 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation

Procedia PDF Downloads 504
14003 The Impact of Female Education on Fertility: A Natural Experiment from Egypt

Authors: Fatma Romeh, Shiferaw Gurmu

Abstract:

This paper examines the impact of female education on fertility, using the change in length of primary schooling in Egypt in 1988-89 as the source of exogenous variation in schooling. In particular, beginning in 1988, children had to attend primary school for only five years rather than six years. This change was applicable to all individuals born on or after October 1977. Using a nonparametric regression discontinuity approach, we compare education and fertility of women born just before and after October 1977. The results show that female education significantly reduces the number of children born per woman and delays the time until first birth. Applying a robust regression discontinuity approach, however, the impact of education on the number of children is no longer significant. The impact on the timing of first birth remained significant under the robust approach. Each year of female education postponed childbearing by three months, on average.

Keywords: Egypt, female education, fertility, robust regression discontinuity

Procedia PDF Downloads 338
14002 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 143
14001 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 290
14000 Limit-Cycles Method for the Navigation and Avoidance of Any Form of Obstacles for Mobile Robots in Cluttered Environment

Authors: F. Boufera, F. Debbat

Abstract:

This paper deals with an approach based on limit-cycles method for the problem of obstacle avoidance of mobile robots in unknown environments for any form of obstacles. The purpose of this approach is the improvement of limit-cycles method in order to obtain safe and flexible navigation. The proposed algorithm has been successfully tested in different configuration on simulation.

Keywords: mobile robot, navigation, avoidance of obstacles, limit-cycles method

Procedia PDF Downloads 429
13999 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 227
13998 Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach

Authors: Christina Cheong, Naomi Keena

Abstract:

In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts.

Keywords: Concrete, Plastic waste additions to concrete, sustainability ratings, sustainable materials

Procedia PDF Downloads 150
13997 Management of the Asthma Crisis in the Unit of Intensive Care of the General Hospital of Reference of Kinshasa

Authors: Eddy K. Mukadi

Abstract:

The aim of this study was to provide contributing elements to improve the management of the asthma crisis in the intensive care unit of the General Reference Hospital of Kinshasa. This was a descriptive study of all patients in the intensive care unit presenting with the asthma attack during the period from February 5, 2013 to February 5, 2014. The main data were obtained from consultation registry and medical records. A total of 35 patients, 21 of whom were male (majority) compared to 14 female. Average age of patients was 46.48 plus or minus 16.98 with extremes ranging from 21-75 years. The clinic was dominated by dyspnea in 100% of cases, followed by rales with 91.4% of cases. In spite of the control of the crisis obtained after the treatment with B2 mimetic by inhalation was introduced A 91.5%; 88% corticosteroids; 80% oxygen, the therapeutic principle recommended for the management of asthma attacks was not respected in the majority of cases. This is why we suggest that improving the quality of care to be administered to patients will yield more adequate results.

Keywords: asthma crisis, intensive care, general hospital, Kinshasa

Procedia PDF Downloads 232
13996 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 314
13995 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method

Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk

Abstract:

The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.

Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching

Procedia PDF Downloads 286
13994 Rethinking Sustainability: Towards an Open System Approach

Authors: Fatemeh Yazdandoust

Abstract:

Sustainability is a growing concern in architecture and urban planning due to the environmental impact of the built environment. Ecological challenges persist despite the proliferation of sustainable design strategies, prompting a critical reevaluation of existing approaches. This study examines sustainable design practices, focusing on the origins and processes of production, environmental impact, and socioeconomic dimensions. It also discusses ‘cleantech’ initiatives, which often prioritize profitability over ecological stewardship. The study advocates for a paradigm shift in urban design towards greater adaptability, complexity, and inclusivity, embracing porosity, incompleteness, and seed planning. This holistic approach emphasizes citizen participation and bottom-up interventions, reimagining urban spaces as evolving ecosystems. The study calls for a reimagining of sustainability that transcends conventional green design concepts, promoting a more resilient and inclusive built environment through an open system approach grounded in adaptability, diversity, and equity principles.

Keywords: sustainability, clean-tech, open system design, sustainable design

Procedia PDF Downloads 63
13993 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 124
13992 On Supporting a Meta-Design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many research have revealed the fact of the complexity of ontology building process that there is a need to have a new approach which addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model in a socio-technical ontology engineering. Principles in the meta-design framework is applied in the construction phases on the ontology. A portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a web semantic application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: socio-technical, metadesign, ontology engineering methodology, semantic web application

Procedia PDF Downloads 438
13991 Integer Programming: Domain Transformation in Nurse Scheduling Problem.

Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu

Abstract:

Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.

Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation

Procedia PDF Downloads 397
13990 Cybersecurity Protection Structures: The Case of Lesotho

Authors: N. N. Mosola, K. F. Moeketsi, R. Sehobai, N. Pule

Abstract:

The Internet brings increasing use of Information and Communications Technology (ICT) services and facilities. Consequently, new computing paradigms emerge to provide services over the Internet. Although there are several benefits stemming from these services, they pose several risks inherited from the Internet. For example, cybercrime, identity theft, malware etc. To thwart these risks, this paper proposes a holistic approach. This approach involves multidisciplinary interactions. The paper proposes a top-down and bottom-up approach to deal with cyber security concerns in developing countries. These concerns range from regulatory and legislative areas, cyber awareness, research and development, technical dimensions etc. The main focus areas are highlighted and a cybersecurity model solution is proposed. The paper concludes by combining all relevant solutions into a proposed cybersecurity model to assist developing countries in enhancing a cyber-safe environment to instill and promote a culture of cybersecurity.

Keywords: cybercrime, cybersecurity, computer emergency response team, computer security incident response team

Procedia PDF Downloads 156
13989 Therapeutic Role of Polygonum bistorta and Zingiber roseum by in vivo and in vitro Study

Authors: Deepak Kumar Mittal, Alok Kumar Jena, Deepmala Joshi

Abstract:

The present study was carried out to observe the hepatoprotective effect and antioxidant activity of the aqueous extract of the roots of Polygonum bistorta (PB) (200 mg/kg) and Zingiber roseum (ZR) (250 mg/kg) in rats treated with carbon tetrachloride (0.15 ml/kg, i.p.). Extract of PB and ZR at the tested doses restored the levels of liver homogenate enzymes, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymes, significantly. The activities of MTT assay significantly recovered the damage and supported the biochemical observations. This study suggests that Zingiber roseum has a higher protective effect on liver, compared to Polygonum bistorta, against carbon tetrachloride-induced hepatotoxicity and possesses antioxidant activities. Also, extracts exhibited moderate anticancer activity towards cell viability at higher concentration.

Keywords: Polygonum bistorta, Zingiber roseum, hepatoprotective effect, carbon tetrachloride, anti-cancerous

Procedia PDF Downloads 430
13988 Deciding on Customary International Law: The ICJ's Approach Using Induction, Deduction, and Assertion

Authors: Maryam Nimehforush, Hamid Vahidkia

Abstract:

The International Court of Justice, as well as international law in general, may not excel in methodology. In contrast to how it interprets treaties, the Court rarely explains how it determines the existence, content, and scope of customary international law rules it uses. The Court's jurisprudence only mentions the inductive and deductive methods of law determination sporadically. Both the Court and legal literature have not extensively discussed their approach to determining customary international law. Surprisingly, the question of the Court's methodology has not garnered much attention despite the fact that interpreting and shaping the law have always been intertwined. This article seeks to redirect focus to the method used by the Court in deciding the customs of international law it enforces, emphasizing the importance of methodology in the evolution of customary international law. The text begins by giving explanations for the concepts of ‘induction’ and ‘deduction’ and explores how the Court utilizes them. It later examines when the Court employs inductive and deductive reasoning, the varied types and purposes of deduction, and the connection between the two approaches. The text questions the different concepts of inductive and deductive tradition and proves that the primary approach utilized by the Court is not induction or deduction but instead, assertion.

Keywords: ICJ, law, international, induction, deduction, assertion

Procedia PDF Downloads 10
13987 An Object-Based Image Resizing Approach

Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai

Abstract:

Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

Keywords: energy map, visual saliency, gradient map, seam carving

Procedia PDF Downloads 476
13986 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 170
13985 Remote Electroacupuncture Analgesia at Contralateral LI4 Acupoint in Complete Freund's Adjuvant-Induced Inflammatory Hindpaw Pain

Authors: Tong-Chien Wu, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). Local EA can reliably attenuate inflammatory pain in mouse with unclear mechanisms. However, the effect of EA on distal and contralateral acupoint for pain control has been rarely studied and the result was controversial. Here in our study, we found that inflammatory hindpaw pain in mouth, which was induced by injecting the complete Freund’s adjuvant (CFA) 2 days ago can be alleviated immediately after 2Hz 15mins EA treatment at contralateral forefoot acupoint LI4 through both mechanic and thermal behavior test, while sham acupoint group is not. The efficacy was observed to be more obvious after the second round of EA treatment on the following day. This analgesic effect is produced by applying EA to a site remote from the painful area. The present study provides a powerful experimental animal model that can be used for investigating the unique physiological mechanisms involved in acupuncture analgesia.

Keywords: remote electroacupuncture, distal EA, pain control, anti-inflammation

Procedia PDF Downloads 188
13984 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware

Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin

Abstract:

Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.

Keywords: digital forensic, detection, eradication, targeted attack, malware

Procedia PDF Downloads 275
13983 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions

Authors: C. E. Sutton, A. Varvani-Farahani

Abstract:

Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.

Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites

Procedia PDF Downloads 403
13982 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 9
13981 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 111