Search results for: steel bridge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2443

Search results for: steel bridge

1213 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 125
1212 Nanotechnology in Construction as a Building Security

Authors: Hanan Fayez Hussein

Abstract:

‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.

Keywords: nanomaterial, global warming, building security, smart homes

Procedia PDF Downloads 63
1211 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit

Procedia PDF Downloads 109
1210 A Multi-Attribute Utility Model for Performance Evaluation of Sustainable Banking

Authors: Sonia Rebai, Mohamed Naceur Azaiez, Dhafer Saidane

Abstract:

In this study, we develop a performance evaluation model based on a multi-attribute utility approach aiming at reaching the sustainable banking (SB) status. This model is built accounting for various banks’ stakeholders in a win-win paradigm. In addition, it offers the opportunity for adopting a global measure of performance as an indication of a bank’s sustainability degree. This measure is referred to as banking sustainability performance index (BSPI). This index may constitute a basis for ranking banks. Moreover, it may constitute a bridge between the assessment types of financial and extra-financial rating agencies. A real application is performed on three French banks.

Keywords: multi-attribute utility theory, performance, sustainable banking, financial rating

Procedia PDF Downloads 447
1209 Semiotics of the New Commercial Music Paradigm

Authors: Mladen Milicevic

Abstract:

This presentation will address how the statistical analysis of digitized popular music influences the music creation and emotionally manipulates consumers.Furthermore, it will deal with semiological aspect of uniformization of musical taste in order to predict the potential revenues generated by popular music sales. In the USA, we live in an age where most of the popular music (i.e. music that generates substantial revenue) has been digitized. It is safe to say that almost everything that was produced in last 10 years is already digitized (either available on iTunes, Spotify, YouTube, or some other platform). Depending on marketing viability and its potential to generate additional revenue most of the “older” music is still being digitized. Once the music gets turned into a digital audio file,it can be computer-analyzed in all kinds of respects, and the similar goes for the lyrics because they also exist as a digital text file, to which any kin of N Capture-kind of analysis may be applied. So, by employing statistical examination of different popular music metrics such as tempo, form, pronouns, introduction length, song length, archetypes, subject matter,and repetition of title, the commercial result may be predicted. Polyphonic HMI (Human Media Interface) introduced the concept of the hit song science computer program in 2003.The company asserted that machine learning could create a music profile to predict hit songs from its audio features Thus,it has been established that a successful pop song must include: 100 bpm or more;an 8 second intro;use the pronoun 'you' within 20 seconds of the start of the song; hit the bridge middle 8 between 2 minutes and 2 minutes 30 seconds; average 7 repetitions of the title; create some expectations and fill that expectation in the title. For the country song: 100 bpm or less for a male artist; 14-second intro; uses the pronoun 'you' within the first 20 seconds of the intro; has a bridge middle 8 between 2 minutes and 2 minutes 30 seconds; has 7 repetitions of title; creates an expectation,fulfills it in 60 seconds.This approach to commercial popular music minimizes the human influence when it comes to which “artist” a record label is going to sign and market. Twenty years ago,music experts in the A&R (Artists and Repertoire) departments of the record labels were making personal aesthetic judgments based on their extensive experience in the music industry. Now, the computer music analyzing programs, are replacing them in an attempt to minimize investment risk of the panicking record labels, in an environment where nobody can predict the future of the recording industry.The impact on the consumers taste through the narrow bottleneck of the above mentioned music selection by the record labels,created some very peculiar effects not only on the taste of popular music consumers, but also the creative chops of the music artists as well. What is the meaning of this semiological shift is the main focus of this research and paper presentation.

Keywords: music, semiology, commercial, taste

Procedia PDF Downloads 374
1208 The Agile Management and Its Relationship to Administrative Ambidexterity: An Applied Study in Alexandria Library

Authors: Samar Sheikhelsouk, Dina Abdel Qader, Nada Rizk

Abstract:

The plan of the organization may impede its progress and creativity, especially in the framework of its work in independent environments and fast-shifting markets, unless the leaders and minds of the organization use a set of practices, tools, and techniques encapsulated in so-called “agile methods” or “lightweight” methods. Thus, this research paper examines the agile management approach as a flexible and dynamic approach and its relationship to the administrative ambidexterity at the Alexandria library. The sample of the study is the employees of the Alexandria library. The study is expected to provide both theoretical and practical implications. The current study will bridge the gap between agile management and administrative approaches in the literature. The study will lead managers to comprehend how the role of agile management in establishing administrative ambidexterity in the organization.

Keywords: agile management, administrative innovation, Alexandria library, Egypt

Procedia PDF Downloads 59
1207 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 169
1206 Egyptian Women in the Informal Economy: Implications of the Covid-19 Pandemic

Authors: Hagar Wahba

Abstract:

In an attempt to bridge a literature gap, the study explores the different gendered consequences of economic globalization on Egyptian women in informal employment. Under the intersectionality theory, the study highlights issues related to equal economic opportunities among women in different segments of informal employment during Covid-19. Accordingly, this study explores the different vulnerabilities of women in lower segments of the informal sector in Egypt, which intersected with inequalities brought by the pandemic. Therefore, through collecting primary data, the study was able to gain a more intersectional understanding of women’s experiences in informal employment during Covid-19. In women in technology-based work in Egypt were proven to be in a more advantaged position than other women whose jobs depended on face-to-face interactions during the pandemic.

Keywords: economic globalisation, informal employment, women, egypt, intersectional feminism, decent work, Covid-19

Procedia PDF Downloads 80
1205 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 282
1204 Implementation of Multi-Carrier Pulse Width Modulation Techniques in Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the Multi-Carrier Pulse Width Modulation for the minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. Multicarrier Pulse Width Modulation method uses Alternate Position of Disposition scheme to determine the appropriate switching angle to Multi-Level Inverter. In this paper simulation results shows that the validation of Multi-Carrier Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform.

Keywords: alternate position, fast fourier analysis, multi-carrier pulse width modulation, multi-level inverter, total harmonic distortion

Procedia PDF Downloads 631
1203 A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge

Authors: Sihyun Park, Hyunwoo Kim, Wooyoung Jung, Dongwoo You

Abstract:

Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field.

Keywords: cable-band Bolts, field test, maintenance, stress reduction

Procedia PDF Downloads 315
1202 Growth of New Media Advertising

Authors: Palwinder Bhatia

Abstract:

As all know new media is a broad term in media studies that emerged in the latter part of the 20th century which refers to on-demand access to content any time, anywhere, on any digital device, as well as interactive user feedback, creative participation and community formation around the media content. The role of new media in advertisement is impeccable these days. It becomes the cheap and best way of advertising. Another important promise of new media is the democratization of the creation, publishing, distribution and consumption of media content. New media brings a revolution in about every field. It makes bridge between customer and companies. World make a global village with the only help of new media. Advertising helps in shaping the consumer behavior and effect on consumer psychology, sociology, social anthropology and economics. People do comments and like the particular brands on the networking sites which create mesmerism impact on the behavior of customer. Recent study did by Times of India shows that 64% of Facebook users have liked a brand on Facebook.

Keywords: film, visual, culture, media, advertisement

Procedia PDF Downloads 262
1201 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower

Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri

Abstract:

Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.

Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.

Procedia PDF Downloads 56
1200 A Safety-Door for Earthquake Disaster Prevention - Part II

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The safety of door has not given much attention. The main problem of doors during and after earthquake is that they are unable to be opened because deviation from its original position by the lateral load. The aim of this research is to develop and evaluate a safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. Nonlinear finite element analysis was conducted in order to evaluate the structural performance and behavior of the proposed door under both monotonic and cyclic loading.

Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis

Procedia PDF Downloads 455
1199 The Synopsis of the AI-Powered Therapy Web Platform ‘Free AI Therapist'

Authors: Arwa Alnowaiser, Hala Shoukri

Abstract:

The ‘FreeAITherapist’ is an artificial intelligence application that uses the power of AI to offer advice and mental health counseling to its users through its chatbot services. The AI therapist is designed to understand users' issues, concerns, and problems and respond appropriately; it provides empathy and guidance and uses evidence-based therapeutic techniques. With its user-friendly platform, it ensures accessibility for individuals in need, regardless of their geographical location. This website was created in direct response to the growing demand for mental health support, aiming to provide a cost-effective and confidential solution. Through promising confidentiality, it considers user privacy and data security. The ‘FreeAITherapist’ strives to bridge the gap in mental health services, offering a reliable resource for individuals seeking guidance and counseling to improve their overall well-being.

Keywords: artificial intelligence, mental health, AI therapist, website, counseling

Procedia PDF Downloads 18
1198 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 283
1197 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 182
1196 Efficient Control of Brushless DC Motors with Pulse Width Modulation

Authors: S. Shahzadi, J. Rizk

Abstract:

This paper describes the pulse width modulated control of a three phase, 4 polar DC brushless motor. To implement this practically the Atmel’s AVR ATmega 328 microcontroller embedded on an Arduino Eleven board is utilized. The microcontroller programming is done in an open source Arduino IDE development environment. The programming logic effectively manipulated a six MOSFET bridge which was used to energize the stator windings as per control requirements. The results obtained showed accurate, precise and efficient pulse width modulated operation. Another advantage offered by this pulse width modulated control was the efficient speed control of the motor. By varying the time intervals between successive commutations, faster energizing of the stator windings was possible thereby leading to quicker rotor alignment with these energized phases and faster revolutions.

Keywords: brushless DC motors, commutation, MOSFET, PWM

Procedia PDF Downloads 495
1195 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee

Abstract:

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.

Keywords: hot-surface, jet impingement, quenching, stagnation point

Procedia PDF Downloads 589
1194 Role-Specific Target-Systems in Professional Bureaucracies: A Qualitative Analysis in the OR

Authors: Kirsten Hoeper, Maike Kriependorf

Abstract:

This paper firstly discusses the initial situation and problems. Afterward, it defines professional bureaucracies and shows their impact for the OR-work. The OR-center and its actors are shown. Finally, the paper provides the empiric design for detecting the target systems of the different work groups within the OR, the quality criteria in qualitative research and empirical results. It is shown that different groups have different targets in their daily work and that helps for a better understanding. More precisely, by detecting the target systems of these experts, we can ‘bridge’ the different points of view to create a common basis for the work in the OR. One of the aims was to find bridges to overcome separating factors. This paper describes the situation in Germany focusing the Hannover Medical School. It can be assumed that the results can be transferred to other countries using the DRG-System (Diagnosis Related Groups).

Keywords: hospital, OR, professional bureaucracies, target systems

Procedia PDF Downloads 279
1193 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 80
1192 Development of a BriMAIN System for Health Monitoring of Railway Bridges

Authors: Prakher Mishra, Dikshant Bodana, Saloni Desai, Sudhanshu Dixit, Sopan Agarwal, Shriraj Patel

Abstract:

Railways are sometimes lifeline of nations as they consist of huge network of rail lines and bridges. Reportedly many of the bridges are aging, weak, distressed and accident prone. It becomes a really challenging task for Engineers and workers to keep up a regular maintenance schedule for proper functioning which itself is quite a hard hitting job. In this paper we have come up with an innvovative wireless system of maintenance called BriMAIN. In this system we have installed two types of sensors, first one is called a force sensor which will continously analyse the readings of pressure at joints of the bridges and secondly an MPU-6050 triaxial gyroscope+accelerometer which will analyse the deflection of the deck of the bridge. Apart from this a separate database is also being made at the server room so that the data can be visualized by the engineers and a warning can be issued in case reading of the sensors goes above threshold.

Keywords: Accelerometer, B-MAIN, Gyroscope, MPU-6050

Procedia PDF Downloads 367
1191 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 101
1190 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: culvert, dynamic load, HS small model, railway transition zone

Procedia PDF Downloads 269
1189 A Conceptual Framework of Digital Twin for Homecare

Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg

Abstract:

This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.

Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence

Procedia PDF Downloads 34
1188 Investigation of Heating Behaviour of E-Textile Structures

Authors: Hande Sezgin, Senem Kursun Bahadır, Yakup Erhan Boke, Fatma Kalaoğlu

Abstract:

Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples were examined by thermal camera.

Keywords: conductive yarn, e-textiles, smart textiles, thermal analysis

Procedia PDF Downloads 533
1187 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 116
1186 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF

Authors: L. Capitanu, V. Floresci, L. L. Badita

Abstract:

Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.

Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence

Procedia PDF Downloads 250
1185 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments

Authors: Rachel Baruch

Abstract:

This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.

Keywords: ICT tools, e-learning, pre-service teachers, new model

Procedia PDF Downloads 447
1184 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 22