Search results for: predictive mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2056

Search results for: predictive mining

826 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 146
825 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis

Authors: Florge Francis A. Sy

Abstract:

Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.

Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width

Procedia PDF Downloads 125
824 Study of the Stability of the Slope Open-Pit Mines: Case of the Mine of Phosphates – Tebessa, Algeria

Authors: Mohamed Fredj, Abdallah Hafsaoui, Radouane Nakache

Abstract:

The study of the stability of the mining works in rock masses fractured is the major concern of the operating engineer. For geotechnical works in mines and quarries, it there is not today's general methodology for analysis and the quantification of the risks relating to the dangers inherent in these concrete types (falling boulders, landslides, etc.). The reasons for this are uncertainty, which weighs on available data or lack of knowledge of the values of the parameters required for this analysis type. Stability calculations must be based on reliable knowledge of the distribution of discontinuities that dissect the Rocky massif and the resistance to shear of the intact rock and discontinuities. This study is aimed to study the stability of slope of mine (Kef Sennoun - Tebessa, Algeria). The problem is analyzed using a numerical model based on the finite elements (software Plaxis 3D).

Keywords: stability, discontinuities, finite elements, rock mass, open-pit mine

Procedia PDF Downloads 321
823 Self-Efficacy, Self-Knowledge, Empathy and Psychological Well-Being as Predictors of Workers’ Job Performance in Food and Beverage Industries in the South-West, Nigeria

Authors: Michael Ayodeji Boyede

Abstract:

Studies have shown that workers’ job performance is very low in Nigeria, especially in the food and beverage industry. This trend had been partially attributed to low workers’ self-efficacy, poor self-knowledge, lack of empathy and poor psychological well-being. The descriptive survey design was adopted. Four factories were purposively selected from three states in Southwestern, Nigeria (Lagos, Ogun and Oyo States). Proportionate random sampling techniques were used in selecting 1,820 junior and supervisory cadre workers in Nestle Plc (369), Coca-Cola Plc (392), Cadbury Plc (443) and Nigeria Breweries (616). The five research instruments used were: Workers’ self-efficacy (r=0.81), Workers’ self-knowledge (r=0.78), Workers’ empathy (r=0.74), Workers’ psychological well-being (r=0.70) and Workers’ performance rating (r=0.72) scales. Quantitative data were analysed using Pearson product moment correlation, Multiple regression at 0.05 level of significance. Findings show that there were significant relationships between Workers’ job performance and self-efficacy (r=.56), self-knowledge (r=.54), Empathy (r=.55) and Psychological Well-being (r=.69) respectively. Self-efficacy, self-knowledge, empathy and psychological well-being jointly predict workers’ job performance (F (4,1815) = 491.05) accounting for 52.0% of its variance. Psychological well-being (B=.52). Self-efficacy (B=.10), self-knowledge (B=.11), empathy (B=. 09) had predictive relative weights on workers’ job performance. Inadequate knowledge and training of the supervisors led to a mismatch of workers thereby reducing workers’ job performance. High self-efficacy, empathy, psychological well-being and good self-knowledge influence workers job performance in the food and beverage industry. Based on the finding employers of labour should provide work environment that would enhance and promote the development of these factors among the workers.

Keywords: self-efficacy, self-knowledge, empathy, psychological well-being, job performance

Procedia PDF Downloads 262
822 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 120
821 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: evolving learning, knowledge extraction, knowledge graph, text mining

Procedia PDF Downloads 458
820 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria

Authors: Okoh Charity N.

Abstract:

This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.

Keywords: preschooler, social learning, indoor activities, outdoor activities

Procedia PDF Downloads 133
819 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved, this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: programming, computing, data, innovation

Procedia PDF Downloads 120
818 The Mobilizing Role of Moral Obligation and Collective Action Frames in Two Types of Protest

Authors: Monica Alzate, Marcos Dono, Jose Manuel Sabucedo

Abstract:

As long as collective action and its predictors constitute a big body of work in the field of political psychology, context-dependent studies and moral variables are a relatively new issue. The main goal of this presentation is to examine the differences in the predictors of collective action when taking into account two different types of protest, and also focus on the role of moral obligation as a predictor of collective action. To do so, we sampled both protesters and non-protesters from two mobilizations (N=376; N=563) of different nature (catalan Independence, and an 'indignados' march) and performed a logistic regression and a 2x2 MANOVA analysis. Results showed that the predictive variables that were more discriminative between protesters and non-protesters were identity, injustice, efficacy and moral obligation for the catalan Diada and injustice and moral obligation for the 'indignados'. Also while the catalans scored higher in the identification and efficacy variables, the indignados did so in injustice and moral obligation. Differences are evidenced between two types of collective action that coexist within the same protest cycle. The frames of injustice and moral obligation gain strength in the post-2010 mobilizations, a fact probably associated with the combination of materialist and post-materialist values that distinguish the movement. All of this emphasizes the need of studying protest from a contextual point of view. Besides, moral obligation emerges as key predictor of collective action engagement.

Keywords: collective action, identity, moral obligation, protest

Procedia PDF Downloads 332
817 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company

Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour

Abstract:

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Keywords: Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability-center-maintenance

Procedia PDF Downloads 303
816 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 147
815 Prototyping the Problem Oriented Medical Record for Connected Health Based on TypeGraphQL

Authors: Sabah Mohammed, Jinan Fiaidhi, Darien Sawyer

Abstract:

Data integration of health through connected services can save lives in the event of a medical emergency or provide efficient and effective interventions for the benefit of the patients through the integration of bedside and bench side clinical research. Such integration will support all wind of change in healthcare by being predictive, pre-emptive, personalized, problem-oriented and participatory. Prototyping a healthcare system that enables data integration has been a big challenge for healthcare for a long time. However, an innovative solution started to emerge by focusing on problem lists where everything can connect the problem list forming a growing graph. This notion was introduced by Dr. Lawrence Weed in early 70’s, but the enabling technologies weren’t mature enough to provide a successful implementation prototype. In this article, we are describing our efforts in prototyping Dr. Lawrence Weed's problem-oriented medical record (POMR) and his patient case schema (SOAP) to shape a prototype for connected health. For this, we are using the TypeGraphQL API and our enterprise-based QL4POMR to describe a Web-Based gateway for healthcare services connectivity. Our prototype has reported success in connecting to the HL7 FHIR medical record and the OpenTarget biomedical repositories.

Keywords: connected health, problem-oriented healthcare record, SOAP, QL4POMR, typegraphQL

Procedia PDF Downloads 99
814 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 55
813 A Review on the Use of Salt in Building Construction

Authors: Vesna Pungercar, Florian Musso

Abstract:

Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.

Keywords: salt, building material, hygrothermal properties, environment

Procedia PDF Downloads 169
812 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 293
811 Portuguese Influence on Minas Gerais Dessert Culinary During Brazil Colonization Period

Authors: Silvania M. P. Silva, Ricardo A. Mazaro, Gemilde M. Queiroz, Josefa Barbosa, Lucas S. Victorino, Grasiela J. Silva

Abstract:

The Minas Gerais sweets have a remarkable personality, perceived on the original usage of fruits, sweets, and cheeses in the Brazilian gastronomic landscape, as a unique representation of Minas Gerais. This memory-related and feeling-oriented food is one of the treasures common to all Brazilians. It is mandatory to mention its Portuguese roots for the use of honey, as well as sugar cane and its countless possibilities. This work will show that this heritage is predominantly Portuguese, born in Portuguese convents and that it crossed the Atlantic. Through a historical survey, visits to mining towns known for their sweet culture and material collected in these places, we present the protagonists of this journey of flavors: the Portuguese cake makers (boleiras), who brought the knowledge, ingredients, and the dream of a better life in the crowded mines of gold and opportunities, helping to form a new Minas Gerais knowledge with their delicacies.

Keywords: sweets from portugal, convent sweets, minas gerais, brazil

Procedia PDF Downloads 170
810 Urban Laboratory for Community Involvement in Urban Design Process

Authors: Anja Jutraz, Tadeja Zupancic

Abstract:

This article explores urban laboratory, which presents a combination of different physical and digital methods and tools for public participation in urban design. The city consists of built and unbuilt environments, which can be defined as a community of people, who live there. Communities should have the option to express opinions and decide about the future of their city, from the early stages of the design process onwards. In this paper, we presented the possibility of involving community into renewal of Banska Štiavnica in Slovakia (more exactly the old mining shaft and lake Michal Štolna) and the methods to promote the community building. As a case study we presented the eTHNo project, Education about Technical, Historical and Natural opportunities of Michal Štolna. Moreover, we discussed the possibility of using virtual digital tools for public participation in urban design, where we especially focused on Virtual Urban Laboratory, VuLab.

Keywords: community building, digital tools, public participation, urban design

Procedia PDF Downloads 574
809 Generating Real-Time Visual Summaries from Located Sensor-Based Data with Chorems

Authors: Z. Bouattou, R. Laurini, H. Belbachir

Abstract:

This paper describes a new approach for the automatic generation of the visual summaries dealing with cartographic visualization methods and sensors real time data modeling. Hence, the concept of chorems seems an interesting candidate to visualize real time geographic database summaries. Chorems have been defined by Roger Brunet (1980) as schematized visual representations of territories. However, the time information is not yet handled in existing chorematic map approaches, issue has been discussed in this paper. Our approach is based on spatial analysis by interpolating the values recorded at the same time, by sensors available, so we have a number of distributed observations on study areas and used spatial interpolation methods to find the concentration fields, from these fields and by using some spatial data mining procedures on the fly, it is possible to extract important patterns as geographic rules. Then, those patterns are visualized as chorems.

Keywords: geovisualization, spatial analytics, real-time, geographic data streams, sensors, chorems

Procedia PDF Downloads 403
808 The Budget Profile of the Municipality of AtaleIa-MG in the Context of the Micro-Region of Teofilo Otoni in Brazil

Authors: Jeferson Gomes Dos Santos, Mirelle Cristina De Abreu Quintela

Abstract:

Considering that after the 1988 Constitution, in Brazil, municipalities have acquired new roles in the face of a financial reality that jeopardizes more substantial actions, the Public Budget is essential for the establishment of guidelines for action, within each budgetary reality. Within this, the present work sought to understand the budget profile of the mining municipality of Ataleia, with a view to identifying its budget composition, in relation to the main sources of revenue and expenditure. To achieve the purposes of the study, information was collected on the municipality's finances, from the years 2000 to 2016, visualizing the progress of its revenues in terms of funding and origin, and expenses in terms of nature and purpose. It was evidenced that the municipality, having its budget revenue in the period, still shows great dependence on intergovernmental transfers, as the own collection was relatively low. The budget expenditure of the period was mainly influenced by social expenditures, but it must be said that the municipality complied with the limits of spending, minimum and maximum, established by law.

Keywords: expenses, municipal budget, planning, revenue

Procedia PDF Downloads 226
807 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 130
806 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 248
805 Coal Mining Safety Monitoring Using Wsn

Authors: Somdatta Saha

Abstract:

The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.

Keywords: ARM, embedded board, wireless sensor network (Zigbee)

Procedia PDF Downloads 341
804 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 49
803 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
802 Prevalence of Thyroid Disorders in Pregnancy in Northern Algeria

Authors: Samira Akdader-Oudahmane, Assia Kamel, Lynda Lakabi, Michael Bruce Zimmermann, Zohra Hamouli-Said, Djamila Meskine

Abstract:

Background: Iodine is a trace element whose adequate intakes are essential during pregnancy to promote the correct growth and development of the fetus. Iodine deficiency is the cause of several disorders in foetal development, and thyroid disorders during pregnancy are associated with an increased risk of miscarriage or premature birth. The aim of this study was to assess the iodine status and thyroid function of pregnant women (PW) in northern Algeria. Methods: Healthy PW were recruited from an urban area (Algiers). Spot urine and venous blood samples were collected to assess iodine status (urinary iodine concentration, UIC) and serum thyroid hormones (TSH, FT4), and anti-thyroid peroxidase antibodies (TPO-Ab) concentrations. Results: The median UIC for the PW (n=172) in Algiers was 246,74µg/L, 244,68 µg/L, and 220,63µg/L, respectively, during the first, second, and third trimesters of pregnancy. Mean TSH and FT4 concentrations were within reference ranges in all groups of women. Among PW, 72.7%, 75.4%, and 75.5% in the first, second and third trimester were TPO-Ab+. Among PW, 14%, 10%, and 10% in the first, second and third trimester, respectively, with TPO -Ab+ had subclinical hypothyroidism. An analysis of the variations in the levels of the serum parameters (FT4, TSH and anti-TPO antibodies) was analyzed according to the UIC intervals admitted and show that these marker are predictive of thyroid function. Conclusion: In northern Algeria, median UICs indicate iodine sufficiency in PW. About 75% of PW are TPO-Ab+ and the prevalence of subclinical hypothyroidism is high.

Keywords: thyroid, pregnant woman, urinary iodine, subclinical hypothyroidism

Procedia PDF Downloads 80
801 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
800 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression

Authors: Issam Aouari, Abdelmalek Abdelhamid

Abstract:

For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.

Keywords: duration, earthquake, prediction, regression, soft soil

Procedia PDF Downloads 153
799 Biopsy or Biomarkers: Which Is the Sample of Choice in Assessment of Liver Fibrosis?

Authors: S. H. Atef, N. H. Mahmoud, S. Abdrahman, A. Fattoh

Abstract:

Background: The aim of the study is to assess the diagnostic value of fibrotest and hyaluronic acid in discriminate between insignificant and significant fibrosis. Also, to find out if these parameters could replace liver biopsy which is currently used for selection of chronic hepatitis C patients eligible for antiviral therapy. Study design: This study was conducted on 52 patients with HCV RNA detected by polymerase chain reaction (PCR) who had undergone liver biopsy and attending the internal medicine clinic at Ain Shams University Hospital. Liver fibrosis was evaluated according to the METAVIR scoring system on a scale of F0 to F4. Biochemical markers assessed were: alpha-2 macroglobulin (α2-MG), apolipoprotein A1 (Apo-A1), haptoglobin, gamma-glutamyl transferase (GGT), total bilirubin (TB) and hyaluronic acid (HA). The fibrotest score was computed after adjusting for age and gender. Predictive values and ROC curves were used to assess the accuracy of fibrotest and HA results. Results: For fibrotest, the observed area under curve for the discrimination between minimal or no fibrosis (F0-F1) and significant fibrosis (F2-F4) was 0.6736 for cutoff value 0.19 with sensitivity of 84.2% and specificity of 85.7%. For HA, the sensitivity was 89.5% and specificity was 85.7% and area under curve was 0.540 at the best cutoff value 71 mg/dL. Multi-use of both parameters, HA at 71 mg/dL with fibrotest score at 0.22 give a sensitivity 89.5%, specificity 100 and efficacy 92.3% (AUC 0.895). Conclusion: The use of both fibrotest score and HA could be as alternative to biopsy in most patients with chronic hepaitis C putting in consideration some limitations of the proposed markers in evaluating liver fibrosis.

Keywords: fibrotest, liver fibrosis, HCV RNA, biochemical markers

Procedia PDF Downloads 287
798 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 76
797 Langerian Mindfulness and School Manager’s Competencies: A Comprehensive Model in Khorasan Razavi Educational Province

Authors: Reza Taherian, Naziasadat Naseri, Elham Fariborzi, Faride Hashmiannejad

Abstract:

Effective management plays a crucial role in the success of educational institutions and training organizations. This study aims to develop and validate a professional competency model for managers in the education and training sector of Khorasan Razavi Province using a mindfulness approach based on Langerian theory. Employing a mixed exploratory design, the research involved qualitative data collection from experts and top national and provincial managers, as well as quantitative data collection using a researcher-developed questionnaire. The findings revealed that 81% of the competency of education and training managers is influenced by the dimensions of Langerian mindfulness, including engagement, seeking, producing, and flexibility. These dimensions were found to be predictive of the competencies of education and training managers, which encompass specialized knowledge, professional skills, pedagogical knowledge, commitment to Islamic values, personal characteristics, and creativity. This research provides valuable insights into the essential role of mindfulness in shaping the competencies of education and training managers, shedding light on the specific dimensions that significantly contribute to managerial success in Khorasan Razavi province.

Keywords: school managers, school manager’s competencies, mindfulness, Langerian mindfulness

Procedia PDF Downloads 55