Search results for: nonparametric geographically weighted regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: nonparametric geographically weighted regression

2677 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
2676 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 82
2675 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 120
2674 Water Access and Food Security: A Cross-Sectional Study of SSA Countries in 2017

Authors: Davod Ahmadi, Narges Ebadi, Ethan Wang, Hugo Melgar-Quiñonez

Abstract:

Compared to the other Least Developed Countries (LDCs), major countries in sub-Saharan Africa (SSA) have limited access to the clean water. People in this region, and more specifically females, suffer from acute water scarcity problems. They are compelled to spend too much of their time bringing water for domestic use like drinking and washing. Apart from domestic use, water through affecting agriculture and livestock contributes to the food security status of people in vulnerable regions like SSA. Livestock needs water to grow, and agriculture requires enormous quantities of water for irrigation. The main objective of this study is to explore the association between access to water and individuals’ food security status. Data from 2017 Gallup World Poll (GWP) for SSA were analyzed (n=35,000). The target population in GWP is the entire civilian, non-institutionalized, aged 15 and older population. All samples selection is probability based and nationally representative. The Gallup surveys an average of 1,000 samples of individuals per country. Three questions related to water (i.e., water quality, availability of water for crops and availability of water for livestock) were used as the exposure variables. Food Insecurity Experience Scale (FIES) was used as the outcome variable. FIES measures individuals’ food security status, and it is composed of eight questions with simple dichotomous responses (1=Yes and 0=No). Different statistical analyses such as descriptive, crosstabs and binary logistic regression, form the basis of this study. Results from descriptive analyses showed that more than 50% of the respondents had no access to enough water for crops and livestock. More than 85% of respondents were categorized as “food insecure”. Findings from cross-tabulation analyses showed that food security status was significantly associated with water quality (0.135; P=0.000), water for crops (0.106; P=0.000) and water for livestock (0.112; P=0.000). In regression analyses, the probability of being food insecure increased among people who expressed no satisfaction with water quality (OR=1.884 (OR=1.768-2.008)), not enough water for crops (OR=1.721 (1.616-1.834)) and not enough water for livestock (OR=1.706 (1.819)). In conclusion, it should note that water access affects food security status in SSA.

Keywords: water access, agriculture, livestock, FIES

Procedia PDF Downloads 150
2673 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 70
2672 Sustainability Rating System for Infrastructure Projects in UAE

Authors: Amrutha Venugopal, Rabee Rustum

Abstract:

In spite of huge investments and the vital role infrastructure plays in the economy of UAE, the country has not yet developed an assessment scheme to measure the sustainability of infrastructure projects/development. The aim of this study was to develop a sustainability rating system for infrastructure projects in UAE using weighted indicator scoring. The identification of the list of 66 indicators was done by content analysis. The sources of content analysis were from government guidelines, research literature and sustainability rating system for infrastructure projects namely BCA Greenmark for Infrastructure (Singapore), ISCA (Australia) and Envision (USA). These indicators were shortlisted based on their relevance in the UAE. A mixture of qualitative and quantitative research methods is utilized to find the weightage to be applied to the indicators and to find suggestive measures to improve infrastructure sustainability in this region. Interviews and surveys were conducted with a good mix of experts from the industry. The data collected from the interviews were collated to provide suggestive measures for improving infrastructure sustainability. The collected survey data were analyzed using statistical analysis techniques to find the indicator weighing. The indicators were shortlisted by 75% to minimize the effort and investment into the process. The weighing of the deleted indicators was distributed among the critical clusters identified by Pareto analysis. Finally a simple Microsoft Excel tool was developed as the rating tool by using the calculated weighing for the indicators.

Keywords: infrastructure, rating system, suggestive measures, sustainability, UAE

Procedia PDF Downloads 305
2671 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods

Procedia PDF Downloads 283
2670 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk

Authors: Michael Mihalicz, Aziz Guergachi

Abstract:

Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.

Keywords: decision making, emotions, prospect theory, visceral factors

Procedia PDF Downloads 149
2669 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support

Authors: Muziwandile Luthuli

Abstract:

Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findings

Keywords: ART adherence, depression, HIV/AIDS, PLWHA

Procedia PDF Downloads 180
2668 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 519
2667 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow

Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam

Abstract:

Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.

Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety

Procedia PDF Downloads 302
2666 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 73
2665 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax

Procedia PDF Downloads 415
2664 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study

Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao

Abstract:

Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.

Keywords: physical activity, gestational diabetes, self-efficacy, predictors

Procedia PDF Downloads 101
2663 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort

Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler

Abstract:

Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.

Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America

Procedia PDF Downloads 84
2662 Surface Water Flow of Urban Areas and Sustainable Urban Planning

Authors: Sheetal Sharma

Abstract:

Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.

Keywords: runoff, built up, roughness, recharge, temporal changes

Procedia PDF Downloads 278
2661 Examining a Volunteer-Tutoring Program for Students with Special Education Needs

Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn

Abstract:

This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.

Keywords: special education, evidence-based practices, curriculum, tutoring

Procedia PDF Downloads 67
2660 Assessment of Level of Sedation and Associated Factors Among Intubated Critically Ill Children in Pediatric Intensive Care Unit of Jimma University Medical Center: A Fourteen Months Prospective Observation Study, 2023

Authors: Habtamu Wolde Engudai

Abstract:

Background: Sedation can be provided to facilitate a procedure or to stabilize patients admitted in pediatric intensive care unit (PICU). Sedation is often necessary to maintain optimal care for critically ill children requiring mechanical ventilation. However, if sedation is too deep or too light, it has its own adverse effects, and hence, it is important to monitor the level of sedation and maintain an optimal level. Objectives: The objective is to assess the level of sedation and associated factors among intubated critically ill children admitted to PICU of JUMC, Jimma. Methods: A prospective observation study was conducted in the PICU of JUMC in September 2021 in 105 patients who were going to be admitted to the PICU aged less than 14 and with GCS >8. Data was collected by residents and nurses working in PICU. Data entry was done by Epi data manager (version 4.6.0.2). Statistical analysis and the creation of charts is going to be performed using SPSS version 26. Data was presented as mean, percentage and standard deviation. The assumption of logistic regression and the result of the assumption will be checked. To find potential predictors, bi-variable logistic regression was used for each predictor and outcome variable. A p value of <0.05 was considered as statistically significant. Finally, findings have been presented using figures, AOR, percentages, and a summary table. Result: in this study, 105 critically ill children had been involved who were started on continuous or intermittent forms of sedative drugs. Sedation level was assessed using a comfort scale three times per day. Based on this observation, we got a 44.8% level of suboptimal sedation at the baseline, a 36.2% level of suboptimal sedation at eight hours, and a 24.8% level of suboptimal sedation at sixteen hours. There is a significant association between suboptimal sedation and duration of stay with mechanical ventilation and the rate of unplanned extubation, which was shown by P < 0.05 using the Hosmer-Lemeshow test of goodness of fit (p> 0.44).

Keywords: level of sedation, critically ill children, Pediatric intensive care unit, Jimma university

Procedia PDF Downloads 61
2659 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 77
2658 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 259
2657 Optimization of Spatial Light Modulator to Generate Aberration Free Optical Traps

Authors: Deepak K. Gupta, T. R. Ravindran

Abstract:

Holographic Optical Tweezers (HOTs) in general use iterative algorithms such as weighted Gerchberg-Saxton (WGS) to generate multiple traps, which produce traps with 99% uniformity theoretically. But in experiments, it is the phase response of the spatial light modulator (SLM) which ultimately determines the efficiency, uniformity, and quality of the trap spots. In general, SLMs show a nonlinear phase response behavior, and they may even have asymmetric phase modulation depth before and after π. This affects the resolution with which the gray levels are addressed before and after π, leading to a degraded trap performance. We present a method to optimize the SLM for a linear phase response behavior along with a symmetric phase modulation depth around π. Further, we optimize the SLM for its varying phase response over different spatial regions by optimizing the brightness/contrast and gamma of the hologram in different subsections. We show the effect of the optimization on an array of trap spots resulting in improved efficiency and uniformity. We also calculate the spot sharpness metric and trap performance metric and show a tightly focused spot with reduced aberration. The trap performance is compared by calculating the trap stiffness of a trapped particle in a given trap spot before and after aberration correction. The trap stiffness is found to improve by 200% after the optimization.

Keywords: spatial light modulator, optical trapping, aberration, phase modulation

Procedia PDF Downloads 187
2656 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
2655 Emigration Improves Life Standard of Families Left Behind: An Evidence from Rural Area of Gujrat-Pakistan

Authors: Shoaib Rasool

Abstract:

Migration trends in rural areas of Gujrat are increasing day by day among illiterate people as they consider it as a source of attraction and charm of destination. It affects the life standard both positive and negative way to their families left behind in the context of poverty, socio-economic status and life standards. It also promotes material items and as well as social indicators of living, housing conditions, schooling of their children’s, health seeking behavior and to some extent their family environment. The nature of the present study is to analyze socio-economic conditions regarding life standard of emigrant families left behind in rural areas of Gujrat district, Pakistan. A survey design was used on 150 families selected from rural areas of Gujrat districts through purposive sampling technique. A well-structured questionnaire was administered by the researcher to explore the nature of the study and for further data collection process. The measurement tool was pretested on 20 families to check the workability and reliability before the actual data collection. Statistical tests were applied to draw results and conclusion. The preliminary findings of the study show that emigration has left deep social-economic impacts on life standards of rural families left behind in Gujrat. They improved their life status and living standard through remittances. Emigration is one of the major sources of development of economy of household and it also alleviate poverty at house household level as well as community and country level. The rationale behind migration varies individually and geographically. There are popular considered attractions in Pakistan includes securing high status, improvement in health condition, coping other, getting married then to acquire nationality, using the unfair means, opting educational visas etc. Emigrants are not only sending remittances but also returning with newly acquired skills and valuable knowledge to their country of origin because emigrants learn new methods of living and working. There are also women migrants who experience social downward mobility by engaging in jobs that are beneath their educational qualifications.

Keywords: emigration, life standard, families, left behind, rural area, Gujrat

Procedia PDF Downloads 443
2654 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool

Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung

Abstract:

High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.

Keywords: machining parameters, machining stability, regression analysis, surface roughness

Procedia PDF Downloads 231
2653 The Intersection of Autistic and Trans* Identity: Qualitative Engaged Study in Eastern Europian Activist Groups

Authors: Hana Drštičková

Abstract:

The paper describes the findings of a qualitative, engaged research focused on the intersection between transgender and autistic identity in a politically engaged setting of activist (trans, queer, crip, disability justice or any combination thereof) groups. It explores the relationship that autistic and trans people have towards activism and how do they feel their identity(ies) impact the kind of political action they take. Geographically, the research terrain is located mainly in Czechia; however, there are important overlaps with other Eastern European countries. The basis of the research’s approach is built on the interconnected principles of the feminist theory of intersectionality, queer/trans studies, disability studies and the concept of the Neurodiversity Paradigm. This paper argues that the social phenomenon of autism and transness is formed differently in Czechia/Eastern Europe and, therefore, deserves additional attention. Nevertheless, it points out that, even though the socio-political context is different, the fact that these identities have a radical political potential to disrupt normative structures in society remains the same. The measure of oppression these structures generate, and the near absence of any public discourse beyond the pathological paradigm in the chosen terrain contributes to the emergence of mainly queer and trans-activist, and to a lesser extent crip, disability justice or mad activist groups, that attract trans and autistic membership. The subsections of the research focus on the topics of the mutual influence of both identities in flux within individual participants, the perceived (dis)connection of networks of oppression or, conversely, support and identification with the community or communities, and the question of how the trans* and autistic members feel their presence affects the activity, internal dynamics, thematic scope and general values of the activist groups they participate in. The research methodology includes participant observation and active participation in groups where the researcher acts as a partial insider, semi-structured in-depth interviews and a critical participatory methodology. Also included is the reflection of not only the combination of researcher and insider roles but also the combination of research and activist intent.

Keywords: activism, autism, queer, neurodiversity, neuroqueer, transgender

Procedia PDF Downloads 76
2652 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 168
2651 The Relationship between Personal, Psycho-Social and Occupational Risk Factors with Low Back Pain Severity in Industrial Workers

Authors: Omid Giahi, Ebrahim Darvishi, Mahdi Akbarzadeh

Abstract:

Introduction: Occupational low back pain (LBP) is one of the most prevalent work-related musculoskeletal disorders in which a lot of risk factors are involved that. The present study focuses on the relation between personal, psycho-social and occupational risk factors and LBP severity in industrial workers. Materials and Methods: This research was a case-control study which was conducted in Kurdistan province. 100 workers (Mean Age ± SD of 39.9 ± 10.45) with LBP were selected as the case group, and 100 workers (Mean Age ± SD of 37.2 ± 8.5) without LBP were assigned into the control group. All participants were selected from various industrial units, and they had similar occupational conditions. The required data including demographic information (BMI, smoking, alcohol, and family history), occupational (posture, mental workload (MWL), force, vibration and repetition), and psychosocial factors (stress, occupational satisfaction and security) of the participants were collected via consultation with occupational medicine specialists, interview, and the related questionnaires and also the NASA-TLX software and REBA worksheet. Chi-square test, logistic regression and structural equation modeling (SEM) were used to analyze the data. For analysis of data, IBM Statistics SPSS 24 and Mplus6 software have been used. Results: 114 (77%) of the individuals were male and 86 were (23%) female. Mean Career length of the Case Group and Control Group were 10.90 ± 5.92, 9.22 ± 4.24, respectively. The statistical analysis of the data revealed that there was a significant correlation between the Posture, Smoking, Stress, Satisfaction, and MWL with occupational LBP. The odds ratios (95% confidence intervals) derived from a logistic regression model were 2.7 (1.27-2.24) and 2.5 (2.26-5.17) and 3.22 (2.47-3.24) for Stress, MWL, and Posture, respectively. Also, the SEM analysis of the personal, psycho-social and occupational factors with LBP revealed that there was a significant correlation. Conclusion: All three broad categories of risk factors simultaneously increase the risk of occupational LBP in the workplace. But, the risks of Posture, Stress, and MWL have a major role in LBP severity. Therefore, prevention strategies for persons in jobs with high risks for LBP are required to decrease the risk of occupational LBP.

Keywords: industrial workers occupational, low back pain, occupational risk factors, psychosocial factors

Procedia PDF Downloads 258
2650 Computer Self-Efficacy, Study Behaviour and Use of Electronic Information Resources in Selected Polytechnics in Ogun State, Nigeria

Authors: Fredrick Olatunji Ajegbomogun, Bello Modinat Morenikeji, Okorie Nancy Chituru

Abstract:

Electronic information resources are highly relevant to students' academic and research needs but are grossly underutilized, despite the institutional commitment to making them available. The under-utilisation of these resources could be attributed to a low level of study behaviour coupled with a low level of computer self-efficacy. This study assessed computer self-efficacy, study behaviour, and the use of electronic information resources by students in selected polytechnics in Ogun State. A simple random sampling technique using Krejcie and Morgan's (1970) Table was used to select 370 respondents for the study. A structured questionnaire was used to collect data on respondents. Data were analysed using frequency counts, percentages, mean, standard deviation, Pearson Product Moment Correlation (PPMC) and multiple regression analysis. Results reveal that the internet (= 1.94), YouTube (= 1.74), and search engines (= 1.72) were the common information resources available to the students, while the Internet (= 4.22) is the most utilized resource. Major reasons for using electronic information resources were to source materials and information (= 3.30), for research (= 3.25), and to augment class notes (= 2.90). The majority (91.0%) of the respondents have a high level of computer self-efficacy in the use of electronic information resources through selecting from screen menus (= 3.12), using data files ( = 3.10), and efficient use of computers (= 3.06). Good preparation for tests (= 3.27), examinations (= 3.26), and organization of tutorials (= 3.11) are the common study behaviours of the respondents. Overall, 93.8% have good study behaviour. Inadequate computer facilities to access information (= 3.23), and poor internet access (= 2.87) were the major challenges confronting students’ use of electronic information resources. According to the PPMC results, study behavior (r = 0.280) and computer self-efficacy (r = 0.304) have significant (p 0.05) relationships with the use of electronic information resources. Regression results reveal that self-efficacy (=0.214) and study behavior (=0.122) positively (p 0.05) influenced students' use of electronic information resources. The study concluded that students' use of electronic information resources depends on the purpose, their computer self-efficacy, and their study behaviour. Therefore, the study recommended that the management should encourage the students to improve their study habits and computer skills, as this will enhance their continuous and more effective utilization of electronic information resources.

Keywords: computer self-efficacy, study behaviour, electronic information resources, polytechnics, Nigeria

Procedia PDF Downloads 120
2649 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 82
2648 The Possible Role of the Endoneurial Fibroblast-like Cells in Resolution of the Endoneurial Edema Following Nerve Crush Injury

Authors: Faris M. Altaf, Abdullah M Elkeshy

Abstract:

Forty-two albino male rats aged between 30 and 40 days (weighted 200 g to 250 g) were used in the present study. The left sural nerves of 36 rats were subjected to crush injury at 1 to 6 weeks intervals using 6 animals at each interval. The right and left sural nerves of the rest 6 rats were used as a control. After 2 weeks of the crush injury, the endoneurium showed channel-like spaces that were lined by the fibroblast-like cells and collagen bundles. These channels contained degenerated myelin and were connected with the perivascular and subperineurial spaces. Some of the flattened fibroblast-like cells were arranged in several layers in the subperineurial and perivascular spaces, forming barrier-like cellular sheets localizing the endoneurial edema in these spaces. Fibroblast-like cells also wrapped the regenerating nerve fibers by their branching cytoplasmic processes. At the end of the third week, the flattened fibroblasts formed nearly continuous sheets in the subperineurial and perivascular spaces. Macrophages were frequently noticed between these cellular barrier-like sheets and in the subperineurial and perivascular spaces. Conclusion: it could be concluded that the endoneurial fibroblast-like cells form barrier-like cellular sheets that localized the endoneurial edema in the subperineurial and perivascular spaces and create also the endoneurial channel-like spaces containing degenerated myelin and endoneurial edema helping the resolution of such edema.

Keywords: sural nerve, endoneurial fibroblast-like cells, endoneurial edema, barrier-like and channel-like spaces

Procedia PDF Downloads 343