Search results for: modified Jacobian matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4441

Search results for: modified Jacobian matrix

3211 Corrosion Response of Friction Stir Processed Mg-Zn-Zr-RE Alloy

Authors: Vasanth C. Shunmugasamy, Bilal Mansoor

Abstract:

Magnesium alloys are increasingly being considered for structural systems across different industrial sectors, including precision components of biomedical devices, owing to their high specific strength, stiffness and biodegradability. However, Mg alloys exhibit a high corrosion rate that restricts their application as a biomaterial. For safe use as biomaterial, it is essential to control their corrosion rates. Mg alloy corrosion is influenced by several factors, such as grain size, precipitates and texture. In Mg alloys, microgalvanic coupling between the α-Mg matrix and secondary precipitates can exist, which results in an increased corrosion rate. The present research addresses this challenge by engineering the microstructure of a biodegradable Mg–Zn–RE–Zr alloy by friction stir processing (FSP), a severe plastic deformation process. The FSP-processed Mg alloys showed improved corrosion resistance and mechanical properties. FSPed Mg alloy showed refined grains, a strong basal texture and broken and uniformly distributed secondary precipitates in the stir zone. Mg, alloy base material, exposed to In vitro corrosion medium showed micro galvanic coupling between precipitate and matrix, resulting in the unstable passive layer. However, FS processed alloy showed uniform corrosion owing to stable surface film formation. The stable surface film is attributed to refined grains, preferred texture and distribution of precipitates. The research results show promising potential for Mg alloy to be developed as a biomaterial.

Keywords: biomaterials, severe plastic deformation, magnesium alloys, corrosion

Procedia PDF Downloads 28
3210 Pharmacokinetic and Tissue Distribution of Etoposide Loaded Modified Glycol Chitosan Nanoparticles

Authors: Akhtar Aman, Abida Raza, Shumaila Bashir, Mehboob Alam

Abstract:

The development of efficient delivery systems remains a major concern in cancer chemotherapy as many efficacious anticancer drugs are hydrophobic and difficult to formulate. Nanomedicines based on drug-loaded amphiphilic glycol chitosan micelles offer potential advantages for the formulation of drugs such as etoposide that may improve the pharmacokinetics and reduce the formulation-related adverse effects observed with current formulations. Amphiphilic derivatives of glycol chitosan were synthesized by chemical grafting of palmitic acid N-hydroxysuccinimide and quaternization to glycol chitosan backbone. To this end, a 7.9 kDa glycol chitosan was modified by palmitoylation and quaternization, yielding a 13 kDa amphiphilic polymer. Micelles prepared from this amphiphilic polymer had a size of 162nm and were able to encapsulate up to 3 mg/ml etoposide. Pharmacokinetic results indicated that the GCPQ micelles transformed the biodistribution pattern and increased etoposide concentration in the brain significantly compared to free drugs after intravenous administration. AUC 0.5-24h showed statistically significant difference in ETP-GCPQ vs. Commercial preparation in liver (25 vs.70, p<0.001), spleen (27 vs.36, p<0.05), lungs (42 vs.136,p<0.001),kidneys(25 vs.70,p< 0.05),and brain(19 vs.9,p<0.001). ETP-GCPQ crossed the blood-brain barrier, and 4, 3.5, 2.6, 1.8, 1.7, 1.5, and 2.5 fold higher levels of etoposide were observed at 0.5, 1, 2, 4, 6, 12, and 24hrs; respectively suggesting these systems could deliver hydrophobic anticancer drugs such as etoposide to tumors but also increased their transport through the biological barriers, thus making it a good delivery system

Keywords: glycol chitosan, micelles, pharmacokinetics, tissue distribution

Procedia PDF Downloads 99
3209 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 321
3208 Hyaluronic Acid as Potential Excipient for Buccal Delivery

Authors: Flavia Laffleur

Abstract:

Summary: Biomaterials have gained immense interest in the pharmaceutical research in the last decades. Hyaluronic acid a carbohydrate and mucopolysaccharide was chemically modified in order to achieve and establish a promising platform for buccal drug delivery. Aim: Novel biomaterial was tested for its potential for buccal drug delivery. Background: Polysaccharide hyaluronic acid (HA) was chemically modified with cysteine ethyl ether (CYS). By immobilization of the thiol-bearing ligand on the polymeric backbone the thiolated bioconjugate HA-CYS was obtained. Methodology: Mucoadhesive, permeation enhancing and stability potential as well as mechanical, physicochemical properties further mucoadhesive strength, swelling index and residence time were investigated. The developed thiolated bioconjugate displayed enhanced mucoadhesiveness on buccal mucosa as well as permeation behavior and polymer stability. The near neutral pH and negative cytotoxicity studies indicated their non-irritability and biocompatible nature with biological tissues. Further, the model drug sulforhodamine 101 was incorporated to determine its drug release profiles. Results: The synthesized thiomer showed no toxicity. The mucoadhesion of thiolated hyaluronic acid on buccal mucosa was significantly improved in comparison to unmodified one. The biomaterial showed 2.5-fold higher stability in polymer structure. The release of sulforhodamine in the presence of thiolated hyaluronic acid was 2.3-fold increased compared to hyaluronic acid. Conclusion: Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. So far, hyaluronic acid was not evaluated for buccal drug delivery.

Keywords: buccal delivery, hyaluronic acid, mucoadhesion, thiomers

Procedia PDF Downloads 498
3207 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 85
3206 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells

Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer

Abstract:

The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.

Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3

Procedia PDF Downloads 92
3205 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 79
3204 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil

Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy

Abstract:

This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.

Keywords: public engagement, public participation, science and technology studies, transgenic politics

Procedia PDF Downloads 297
3203 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation

Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra

Abstract:

The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.

Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone

Procedia PDF Downloads 136
3202 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 465
3201 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems

Authors: Akshay S. Dalvi, Hazim El-Mounayri

Abstract:

The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.

Keywords: district cooling plant, energy systems, framework, MBSE

Procedia PDF Downloads 124
3200 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation

Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang

Abstract:

Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.

Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating

Procedia PDF Downloads 149
3199 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 201
3198 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 325
3197 Effect of Temperature and CuO Nanoparticle Concentration on Thermal Conductivity and Viscosity of a Phase Change Material

Authors: V. Bastian Aguila, C. Diego Vasco, P. Paula Galvez, R. Paula Zapata

Abstract:

The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was made by using octadecane as a base fluid and CuO spherical nanoparticles of 75 nm (MkNano). Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred as nanoPCM. Three nanoPCM were prepared through the two-step method (2.5, 5.0 and 10.0%wv). In order to increase the stability of the nanoPCM, the surface of the CuO nanoparticles was modified with sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed by using an ultrasonic horn (Hielscher UP50H) during one hour (amplitude of 180 μm at 50 W). The thermal conductivity was measured by using a thermal properties analyzer (KD2-Pro) in the temperature range of 30ºC to 40ºC. The viscosity was measured by using a Brookfield DV2T-LV viscosimeter to 30 RPM in the temperature range of 30ºC to 55ºC. The obtained results for the nanoPCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. Respect to the effect of the nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. The thermal conductivity raised up to 9% respect to the base fluid, and the viscosity increases up to 60%, in both cases for the higher concentration. Finally, the viscosity measurements for different rotation speeds (30 RPM - 80 RPM) exhibited that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a viscoplastic (Bingham) or shear thinning (power-law) non-Newtonian behavior.

Keywords: NanoPCM, thermal conductivity, viscosity, non-Newtonian fluid

Procedia PDF Downloads 413
3196 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle

Procedia PDF Downloads 354
3195 Short-Term versus Long-Term Effect of Waterpipe Smoking Exposure on Cardiovascular Biomarkers in Mice

Authors: Abeer Rababa'h, Ragad Bsoul, Mohammad Alkhatatbeh, Karem Alzoubi

Abstract:

Introduction: Tobacco use is one of the main risk factors to cardiovascular diseases (CVD) and atherosclerosis in particular. WPS contains several toxic materials such as: nicotine, carcinogens, tar, carbon monoxide and heavy metals. Thus, WPS is considered to be as one of the toxic environmental factors that should be investigated intensively. Therefore, the aim of this study is to investigate the effect of WPS on several cardiovascular biological markers that may cause atherosclerosis in mice. The study also conducted to study the temporal effects of WPS on the atherosclerotic biomarkers upon short (2 weeks) and long-term (8 weeks) exposures. Methods: mice were exposed to WPS and heart homogenates were analyzed to elucidate the effects of WPS on matrix metalloproteinase (MMPs), endothelin-1 (ET-1) and, myeloperoxidase (MPO). Following protein estimation, enzyme-linked immunosorbent assays were done to measure the levels of MMPs (isoforms 1, 3, and 9), MPO, and ET-1 protein expressions. Results: our data showed that acute exposure to WPS significantly enhances the levels of MMP-3, MMP- 9, and MPO expressions (p < 0.05) compared to their corresponding control. However, the body was capable to normalize the level of expressions for such parameters following continuous exposure for 8 weeks (p > 0.05). Additionally, we showed that the level of ET-1 expression was significantly higher upon chronic exposure to WPS compared to both control and acute exposure groups (p < 0.05). Conclusion: Waterpipe exposure has a significant negative effect on atherosclerosis and the enhancement of the atherosclerotic biomarkers expression (MMP-3 and 9, MPO, and ET-1) might represent an early scavenger of compensatory efforts to maintain cardiac function after WP exposure.

Keywords: atherosclerotic biomarkers, cardiovascular disease, matrix metalloproteinase, waterpipe

Procedia PDF Downloads 342
3194 Thermal and Mechanical Properties of Polycaprolactone-Soy Lecithin Modified Bentonite Nanocomposites

Authors: Danila Merino, Leandro N. Ludueña, Vera A. Alvarez

Abstract:

Clays are commonly used to reinforce polymeric materials. In order to modify them, long-chain quaternary-alkylammonium salts have been widely employed. However, the application of these clays in biological fields is limited by the toxicity and poor biocompatibility presented by these modifiers. Meanwhile, soy lecithin, acts as a natural biosurfactant and environment-friendly biomodifier. In this report, we analyse the effect of content of soy lecithin-modified bentonite on the properties of polycaprolactone (PCL) nanocomposites. Commercial grade PCL (CAPA FB 100) was supplied by Perstorp, with Mw = 100000 g/mol. Minarmco S.A. and Melar S.A supplied bentonite and soy lecithin, respectively. Clays with 18, 30 and 45 wt% of organic content were prepared by exchanging 4 g of Na-Bent with 1, 2 and 4 g of soy lecithin aqueous and acid solution (pH=1, with HCl) at 75ºC for 2 h. Then, they were washed and lyophilized for 72 h. Samples were labeled A, B and C. Nanocomposites with 1 and 2 wt.% of each clay were prepared by melt-intercalation followed by compression-moulding. An intensive Brabender type mixer with two counter-rotating roller rotors was used. Mixing temperature was 100 ºC; speed of rotation was 100 rpm. and mixing time was 10 min. Compression moulding was carried out in a hydraulic press under 75 Kg/mm2 for 10 minutes at 100 ºC. The thickness of the samples was about 1 mm. Thermal and mechanical properties were analysed. PCL nanocomposites with 1 and 2% of B presented the best mechanical properties. It was observed that an excessive organic content produced an increment on the rigidity of PCL, but caused a detrimental effect on the tensile strength and elongation at break of the nanocomposites. Thermogravimetrical analyses suggest that all reinforced samples have higher resistance to degradation than neat PCL.

Keywords: chemical modification, clay, nanocomposite, characterization

Procedia PDF Downloads 192
3193 Chemical, Physical and Microbiological Characteristics of a Texture-Modified Beef- Based 3D Printed Functional Product

Authors: Elvan G. Bulut, Betul Goksun, Tugba G. Gun, Ozge Sakiyan Demirkol, Kamuran Ayhan, Kezban Candogan

Abstract:

Dysphagia, difficulty in swallowing solid foods and thin liquids, is one of the common health threats among the elderly who require foods with modified texture in their diet. Although there are some commercial food formulations or hydrocolloids to thicken the liquid foods for dysphagic individuals, there is still a need for developing and offering new food products with enriched nutritional, textural and sensory characteristics to safely nourish these patients. 3D food printing is an appealing alternative in creating personalized foods for this purpose with attractive shape, soft and homogenous texture. In order to modify texture and prevent phase separation, hydrocolloids are generally used. In our laboratory, an optimized 3D printed beef-based formulation specifically for people with swallowing difficulties was developed based on the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project # 218O017). The optimized formulation obtained from response surface methodology was 60% beef powder, 5.88% gelatin, and 0.74% kappa-carrageenan (all in a dry basis). This product was enriched with powders of freeze-dried beet, celery, and red capia pepper, butter, and whole milk. Proximate composition (moisture, fat, protein, and ash contents), pH value, CIE lightness (L*), redness (a*) and yellowness (b*), and color difference (ΔE*) values were determined. Counts of total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), mold and yeast, total coliforms were conducted, and detection of coagulase positive S. aureus, E. coli, and Salmonella spp. were performed. The 3D printed products had 60.11% moisture, 16.51% fat, 13.68% protein, and 1.65% ash, and the pH value was 6.19, whereas the ΔE* value was 3.04. Counts of TMAB, LAB, mold and yeast and total coliforms before and after 3D printing were 5.23-5.41 log cfu/g, < 1 log cfu/g, < 1 log cfu/g, 2.39-2.15 log EMS/g, respectively. Coagulase positive S. aureus, E. coli, and Salmonella spp. were not detected in the products. The data obtained from this study based on determining some important product characteristics of functional beef-based formulation provides an encouraging basis for future research on the subject and should be useful in designing mass production of 3D printed products of similar composition.

Keywords: beef, dysphagia, product characteristics, texture-modified foods, 3D food printing

Procedia PDF Downloads 106
3192 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 160
3191 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 343
3190 Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age

Authors: V. G. Cappellesso, D. M. G. da Silva, J. A. Arndt, N. dos Santos Petry, A. B. Masuero, D. C. C. Dal Molin

Abstract:

Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.

Keywords: sealf-healing, autogenous, water/cement ratio, curing cycles, test methods

Procedia PDF Downloads 151
3189 Integrating a Security Operations Centre with an Organization’s Existing Procedures, Policies and Information Technology Systems

Authors: M. Mutemwa

Abstract:

A Cybersecurity Operation Centre (SOC) is a centralized hub for network event monitoring and incident response. SOCs are critical when determining an organization’s cybersecurity posture because they can be used to detect, analyze and report on various malicious activities. For most organizations, a SOC is not part of the initial design and implementation of the Information Technology (IT) environment but rather an afterthought. As a result, it is not natively a plug and play component; therefore, there are integration challenges when a SOC is introduced into an organization. A SOC is an independent hub that needs to be integrated with existing procedures, policies and IT systems of an organization such as the service desk, ticket logging system, reporting, etc. This paper discussed the challenges of integrating a newly developed SOC to an organization’s existing IT environment. Firstly, the paper begins by looking at what data sources should be incorporated into the Security Information and Event Management (SIEM) such as which host machines, servers, network end points, software, applications, web servers, etc. for security posture monitoring. That is which systems need to be monitored first and the order by which the rest of the systems follow. Secondly, the paper also describes how to integrate the organization’s ticket logging system with the SOC SIEM. That is how the cybersecurity related incidents should be logged by both analysts and non-technical employees of an organization. Also the priority matrix for incident types and notifications of incidents. Thirdly, the paper looks at how to communicate awareness campaigns from the SOC and also how to report on incidents that are found inside the SOC. Lastly, the paper looks at how to show value for the large investments that are poured into designing, building and running a SOC.

Keywords: cybersecurity operation centre, incident response, priority matrix, procedures and policies

Procedia PDF Downloads 148
3188 Serum Levels of Carnitine in Multiple Sclerosis Patients in Comparison with Healthy People and its Association with Fatigue Severity

Authors: Mohammad Hossein Harirchian, Siavash Babaie, Nika keshtkaran, Sama Bitarafan

Abstract:

Background: Fatigue is a common complaint of multiple sclerosis (MS) patients, adversely affecting their quality of life. There is a lot of evidence showing that Carnitine deficiency is linked to fatigue development and severity in some conditions. This study aimed to compare the levels of Free L-Carnitine (FLC) between MS patients and healthy people and evaluate its association with the severity of fatigue. Methods: This case-control study included 30 patients with relapsing-remitting MS (RRMS) in 2 sex-matched equal-number groups according to the presence or absence of fatigue and 30 sex-matched healthy people in the control group. In addition, between two patient groups, we compared Serum level of FLC between the patient and healthy group. Fatigue was scored using two valid questionnaires of fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS). In addition, association between Serum level of FLC and fatigue severity was evaluated in MS patients. Results: There was no significant difference in serum levels of FLC between MS patients and healthy people. The patients with fatigue had a significantly lower FLC (mg/dl) value than patients without fatigue (22.53 ± 15.84 vs. 75.36 ± 51.98, P < 0.001). The mean value of FSS and MFIS in patients with fatigue were 48.80±8.55 and 62.87 ± 13.63, respectively, which was nearly two-fold higher than group without fatigue (P < 0.001). There was a negative correlation between the serum level of FLC and fatigue severity scales (Spearman rank correlation= 0.76, P < 0.001). Conclusion: We showed healthy people and MS patients were not different in levels of FLC. In addition, patients with lower serum levels of FLC might experience more severe fatigue. Therefore, this could clarify that supplementation with L-Carnitine might be considered as a complementary treatment for MS-related fatigue.

Keywords: fatigue, multiple sclerosis, L-carnitine, modified fatigue impact scale

Procedia PDF Downloads 133
3187 Redesigning Malaysia Batik Sarong by Applying Quality Function Deployment

Authors: M. Kamal, Y. Wang, R. Kennon

Abstract:

Quality Function Deployment is a useful tool in product development with the application of voice of customer. In this paper, it aims to be applied as a product development tool in redesigning fashion and textile product. The purpose of these studies is to apply the effective use of Voice of Customer in redesigning cultural fashion product. The data collection from Voice of Customer or consumers’ feedback might help the producer to improve the quality of merchandise ahead. Voice of Customer could give a specific detailing for quality which needs to be redesigned according to customers’ requirements. Meanwhile, the next objective is to differentiate design specifications and characteristics using House of Quality. In product designing phase, it is very important to distinguish each specification and characteristic which translated from Voice of Customer to House of Quality matrix. This matrix would help designers to development according to qualities that customer wants for the better and successful product in the market. It is hope this research would indicate the customers’ requirements and production team idea might be measured and translated to a systematic data. The specific technical data could be planned ahead with specific design details as well. This could be a sustainable approach for a traditional product which could control the material that they use and sustain the quality as the past production. As a conclusion, this study would benefit the Small Medium Enterprises design team or the designers to style an item from customers view with organised projection of the product. The finding also could assist designers or batik producers’ to recognise specific details Batik sarong from consumers as well as in in advertising and marketing strategy plan.

Keywords: house of quality, Malaysia batik sarong, quality function deployment, voice of customer

Procedia PDF Downloads 586
3186 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder

Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek

Abstract:

The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.

Keywords: acid attack, mortar, EVA polymer, rubber aggregates

Procedia PDF Downloads 281
3185 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 339
3184 Streptavidin-Biotin Attachment on Modified Silicon Nanowires

Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh

Abstract:

Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.

Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS

Procedia PDF Downloads 407
3183 A Comparative Study of Morphine and Clonidine as an Adjunct to Ropivacaine in Paravertebral Block for Modified Radical Mastectomy

Authors: Mukesh K., Siddiqui A. K., Abbas H., Gupta R.

Abstract:

Background: General Anesthesia is a standard for breast onco-surgery. The issue of postoperative pain and the occurrence of nausea and vomiting has prompted the quest for a superior methodology with fewer complications. Over the recent couple of years, paravertebral block (PVB) has acquired huge fame either in combination with GA or alone for anesthetic management. In this study, we aim to evaluate the efficacy of morphine and clonidine as an adjunct to ropivacaine in a paravertebral block in breast cancer patients undergoing modified radical mastectomy. Methods: In this study, total 90 patients were divided into three groups (30 each) on the basis of computer-generated randomization. Group C (Control): Paravertebral block with 0.25% ropivacaine (19ml) and 1 ml saline; Group M- Paravertebral block with 0.25% ropivacaine(19ml) + 20 microgram/kg body weight morphine; Group N: Paravertebral block with 0.25% ropivacaine(19ml) +1.0 microgram/kg body weight clonidine. The postoperative pain intensity was recorded using the visual analog scale (VAS) and Sedation was observed by the Ramsay Sedation score (RSS). Results: The VAS was similar at 0hr, 2hr and 4 hr in the postoperative period among all the groups. There was a significant (p=0.003) difference in VAS from 6 hr to 20 hr in the postoperative period among the groups. A significant (p<0.05) difference was observed among the groups at 8 hr to 20 hr). The first requirement of analgesia was significantly (p=0.001) higher in Group N (7.70±1.74) than in Group C (4.43±1.43) and Group M (7.33±2.21). Conclusion: The morphine in the paravertebral block provides better postoperative analgesia. The consumption of rescue analgesia was significantly reduced in the morphine group as compared to the clonidine group. The procedure also proved to be safe as no complication was encountered in the paravertebral block in our study.

Keywords: ropivacaine, morphine, clonidine, paravertebral block

Procedia PDF Downloads 112
3182 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 255