Search results for: hybrid solid electrolytes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3870

Search results for: hybrid solid electrolytes

2640 Structural Investigation and Hyperfine Interactions of BaBiₓLaₓFe₁₂₋₂ₓO₁₉ (0.0 ≤ X ≤ 0.5) Hexaferrites

Authors: Hakan Gungunes, Ismail A. Auwal, Abdulhadi Baykal, Sagar E. Shirsath

Abstract:

Barium hexaferrite, BaFe₁₂O₁₉, substituted by Bi³⁺ and La³⁺ (BaBiₓLaₓFe₁₂₋₂ₓO₁₉ where 0.0 ≤ x ≤ 0.5) were prepared by solid state synthesis route. The effect of substituted Bi³⁺ and La³⁺ ions on the structure, morphology, magnetic and cation distributions of barium hexaferrite were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. XRD powder patterns were refined by the Rietveld analysis method which confirmed the formation of single phase magneto-plumbite structure and the substitution of La³⁺ and Bi³⁺ ions into the lattice of barium ferrite. These results show that both La³⁺ and Bi³⁺ ions completely enter into barium hexaferrite lattice without disturbing the hexagonal ferrite structure. The EDX spectra confirmed the presence of all the constituents in expected elemental percentage. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi and La substitutions have been determined. Cation distribution in the presently investigated hexaferrite system was estimated using the relative area of Mössbauer spectroscopy.

Keywords: hexaferrite, mössbauer, cation distribution, solid state synthesis

Procedia PDF Downloads 355
2639 Hybrid Model of an Increasing Unique Consumer Value on Purchases that Influences the Consumer Loyalty and the Pursuit of a Sustainable Competitive Advantage from the Institutions in Jakarta

Authors: Wilhelmus Hary Susilo

Abstract:

The marketplace would have at least some resources that are unique (e.g., well communication, knowledgeable employees, consumer value, effective transaction, efficient production processes and institutional branding). The institutions should have an advantage in resources and then could lead to positions of competitive advantage. These major challenges focus on increasing unique consumer value on reliable purchases that influence of loyalty and pursuit of a sustainable competitive advantage from the Institutions in Jakarta. Furthermore, a research was conducted with a quantitative method and a confirmatory strategic research design. The research resulted in entire confirmatory factors analysis (1st CFA and 2nd CFA) among variables pertains to; χ2//Df (9.30, 4.38, 6.95, 2.76, 2.97, 2.91, 2.32 and 6.90), GFI (0.72, 0.82, 0.82, 0.81, 0.78, 0.84, 0.89 and 0.70) and CFI (0.90, 0.95, 0.93, 0.92, 0.95, 0.91, 0.96 and 0.89), which indicates a good model. Furthermore, the hybrid model is well fit with, χ2//Df=1.84, P value = 0.00, RMSEA = 0.076, GFI = 0.76, NNFI= 0.95, PNFI= 0.82, IFI= 0.96, RFI= 0.91, AGFI= 0.71 and CFI= 0.96. The result was significant hypothesis, i.e. variables of communitization marketing 3.0 and price perception influenced to unique value of consumer with tvalue =4.46 and 5.89. Furthermore, the consumers value influenced the purchasing with t value = 5.94. Additionally, the loyalty, the ‘communitization’, and the character building marketing 3.0 are affecting the pursuit of a sustainable competitive advantage from institutions with t value = 7.57, -2.12, and 2.04. Finally, the test between the most superior variable dimensions is significantly correlated between INOV and WDES, RESPON and ATT covariance matrix value= 0.72 and 0.71. Thus, ‘communitization’ and character building marketing 3.0 with dimensions of responsibility and technologies would increase a competitive advantage with the dimensions of the innovation and the job design from the institutions.

Keywords: consumer loyalty, marketing 3.0, unique consumer value, purchase, sustainable competitive advantage

Procedia PDF Downloads 276
2638 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 219
2637 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 190
2636 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon

Procedia PDF Downloads 321
2635 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 108
2634 A Foucauldian Analysis of Postcolonial Hybridity in a Kuwaiti Novel

Authors: Annette Louise Dupont

Abstract:

Background and Introduction: Broadly defined, hybridity is a condition of racial and cultural ‘cross-pollination’ which arises as a result of contact between colonized and colonizer. It remains a highly contested concept in postcolonial studies as it is implicitly underpinned by colonial notions of ‘racial purity.’ While some postcolonial scholars argue that individuals exercise significant agency in the construction of their hybrid subjectivities, others underscore associated experiences of exclusion, marginalization, and alienation. Kuwait and the Philippines are among the most disparate of contemporary postcolonial states. While oil resources transformed the former British Mandate of Kuwait into one of the world’s richest countries, enduring poverty in the former US colony of the Philippines drives a global diaspora which produces multiple Filipino hybridities. Although more Filipinos work in the Arabian Gulf than in any other region of the world, scholarly and literary accounts of their experiences of hybridization in this region are relatively scarce when compared to those set in North America, Australia, Asia, and Europe. Study Aims and Significance: This paper aims to address this existing lacuna by investigating hybridity and other postcolonial themes in a novel by a Kuwaiti author which vividly portrays the lives of immigrants and citizens in Kuwait and which gives a rare voice and insight into the struggles of an Arab-Filipino and European-Filipina. Specifically, this paper explores the relationships between colonial discourses of ‘black’ and ‘white’ and postcolonial discourses pertaining to ‘brown’ Filipinos and ‘brown’ Arabs, in order to assess their impacts on the protagonists’ hybrid subjectivities. Methodology: Foucault’s notions of discourse not only provide a conceptual basis for analyzing the colonial ideology of Orientalism, but his theories related to the social exclusion of the ‘mad’ also elucidate the mechanisms by which power can operate to marginalize, alienate and subjectify the Other, therefore a Foucauldian lens is applied to the analysis of postcolonial themes and hybrid subjectivities portrayed in the novel. Findings: The study finds that Kuwaiti and Filipino discursive practices mirror those of former white colonialists and colonized black laborers and that these discursive practices combine with a former British colonial system of foreign labor sponsorship to create a form of governmentality in Kuwait which is based on exclusion and control. The novel’s rich social description and the reflections of the key protagonist and narrator suggest that such fiction has a significant role to play in highlighting the historical and cultural specificities of experiences of postcolonial hybridity in under-researched geographic, economic, social, and political settings. Whereas hybridity can appear abstract in scholarly accounts, the significance of literary accounts in which the lived experiences of hybrid protagonists are anchored to specific historical periods, places and discourses, is that contextual particularities are neither obscured nor dehistoricized. Conclusions: The application of Foucauldian theorizations of discourse, disciplinary, and biopower to the analysis of this Kuwaiti literary text serves to extend an understanding of the effects of contextually-specific discourses on hybrid Filipino subjectivities, as well as a knowledge of prevailing social dynamics in a little-researched postcolonial Arabian Gulf state.

Keywords: Filipino, Foucault, hybridity, Kuwait

Procedia PDF Downloads 113
2633 Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers for Lithium Ion Battery Application

Authors: Umran Kurtan, Hamide Aydin, Sevim Unugur Celik, Ayhan Bozkurt

Abstract:

In the present work, novel hBN/polyacrylonitrile composite nanofibers were produced via electrospinning approach and loaded with the electrolyte for rechargeable lithium-ion battery applications. The electrospun nanofibers comprising various hBN contents were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The influence of hBN/PAN ratios onto the properties of the porous composite system, such as fiber diameter, porosity, and the liquid electrolyte uptake capability were systematically studied. Ionic conductivities and electrochemical characterizations were evaluated after loading electrospun hBN/PAN composite nanofiber with liquid electrolyte, i.e., 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). The electrolyte loaded nanofiber has a highest ionic conductivity of 10−3 S cm⁻¹ at room temperature. According to cyclic voltammetry (CV) results it exhibited a high electrochemical stability window up to 4.7 V versus Li+/Li. Li//10 wt% hBN/PAN//LiCO₂ cell was produced which delivered high discharge capacity of 144 mAhg⁻¹ and capacity retention of 92.4%. Considering high safety and low cost properties of the resulting hBN/PAN fiber electrolytes, these materials can be suggested as potential separator materials for lithium-ion batteries.

Keywords: hexagonal boron nitride, polyacrylonitrile, electrospinning, lithium ion battery

Procedia PDF Downloads 129
2632 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir

Abstract:

Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.

Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh

Procedia PDF Downloads 218
2631 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 54
2630 Visible Light Communication and Challenges

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.

Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes

Procedia PDF Downloads 55
2629 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 103
2628 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 113
2627 Factors Affecting Cost Efficiency of Municipal Waste Services in Tuscan Municipalities: An Empirical Investigation by Accounting for Different Management

Authors: María Molinos-Senante, Giulia Romano

Abstract:

This paper aims at investigating the effect of ownership in the efficiency assessment of municipal solid waste management. In doing so, the Data Envelopment Analysis meta-frontier approach integrating unsorted waste as undesirable output was applied. Three different clusters of municipalities have been created on the basis of the ownership type of municipal waste operators. In the second stage of analysis, the paper investigates factors affecting efficiency, in order to provide an outlook of levers to be used by policy and decision makers to improve efficiency, taking into account different management models in force. Results show that public waste management firms have better performance than mixed and private ones since their efficiency scores are significantly larger. Moreover, it has been demonstrated that the efficiency of waste management firms is statistically influenced by the age of population, population served, municipal size, population density and tourism rate. It evidences the importance of economies of scale on the cost efficiency of waste management. This issue is relevant for policymakers to define and implement policies aimed to improve the long-term sustainability of waste management in municipalities.

Keywords: data envelopment analysis, efficiency, municipal solid waste, ownership, undesirable output

Procedia PDF Downloads 143
2626 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 75
2625 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 172
2624 Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents

Authors: Rahul Warmoota, Aditya Bhardwaj, Steffy Angural, Monika Rana, Sunena Jassal, Neena Puri, Naveen Gupta

Abstract:

Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste.

Keywords: chitin, chitin-oligosaccharides, chitinase, protease, biodegradation, crab shells, prawn shells, fish scales

Procedia PDF Downloads 85
2623 Factors Affecting Sustainability of a 3D Printed Object

Authors: Kadrefi Athanasia, Fronimaki Evgenia, Mavri Maria

Abstract:

3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object.

Keywords: additive manufacturing, 3D printing, sustainable manufacturing, sustainable production

Procedia PDF Downloads 39
2622 New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition

Authors: A. Aly Salwa, H. Diekmann, S. Hafiz Ragaa, DG Abo Elhassan

Abstract:

This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health.

Keywords: aflatoxin M1, Hydrated sodium calcium aluminium silicate, detoxification, raw cow milk

Procedia PDF Downloads 414
2621 Synthetic Cannabinoids: Extraction, Identification and Purification

Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan

Abstract:

In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.

Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids

Procedia PDF Downloads 448
2620 Transient Response of Elastic Structures Subjected to a Fluid Medium

Authors: Helnaz Soltani, J. N. Reddy

Abstract:

Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.

Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response

Procedia PDF Downloads 551
2619 Disposal Behavior of Extreme Poor People Living in Guatemala at the Base of the Pyramid

Authors: Katharina Raab, Ralf Wagner

Abstract:

With the decrease of poverty, the focus on the solid waste challenge shifts away from affluent, mostly Westernized consumers to the base of the pyramid. The relevance of considering the disposal behavior of impoverished people arises from improved welfare, leading to an increase in consumption opportunities and, consequently, of waste production. In combination with the world’s growing population the relevance of the topic increases, because solid waste management has global impacts on consumers’ welfare. The current annual municipal solid waste generation is estimated to 1.9 billion tonnes, 30% remains uncollected. As for the collected 70% is landfilling and dumping, 19% is recycled or recovered, 11% is led to energy recovery facilities. Therefore, aim is to contribute by adding first insights about poor people's disposal behaviors, including the framing of their rationalities, emotions and cognitions. The study provides novel empirical results obtained from qualitative semi-structured in-depth interviews near Guatemala City. In the study’s framework consumers have to choose from three options when deciding what to do with their obsolete possessions: Keeping the product: The main reason for this is the respondent´s emotional attachment to a product. Further, there is a willingness to use the same product under a different scope when it loses its functionality–they recycle their belongings in a customized and sustainable way. Permanently disposing of the product: The study reveals two dominant disposal methods: burning in front of their homes and throwing away in the physical environment. Respondents clearly recognized the disadvantages of burning toxic durables, like electronics. Giving a product away as a gift supports the integration of individuals in their peer networks of family and friends. Temporarily disposing of the product: Was not mentioned–to be specific, rent or lend a product to someone else was out of question. Contrasting the background to which extend poor people are aware of the consequences of their disposal decisions and how they feel about and rationalize their actions were quite unexpected. Respondents reported that they are worried about future consequences with impacts they cannot anticipate now–they are aware that their behaviors harm their health and the environment. Additionally, they expressed concern about the impact this disposal behavior would have on others’ well-being and are therefore sensitive to the waste that surrounds them. Concluding, the BoP-framed life and Westernized consumption, both fit in a circular economy pattern, but the nature of how to recycle and dispose separates these two societal groups. Both systems own a solid waste management system, but people living in slum-type districts and rural areas of poor countries are less interested in connecting to the system–they are primarily afraid of the costs. Further, it can be said that a consumer’s perceived effectiveness is distinct from environmental concerns, but contributes to forecasting certain pro-ecological behaviors. Considering the rationales underlying disposal decisions, thoughtfulness is a well-established determinant of disposition behavior. The precipitating events, emotions and decisions associated with the act of disposing of products are important because these decisions can trigger different results for the disposal process.

Keywords: base of the pyramid, disposal behavior, poor consumers, solid waste

Procedia PDF Downloads 153
2618 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 193
2617 Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies

Authors: Marwan Keshlaf, Hassan Fellah

Abstract:

This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior.

Keywords: Apis mellifera, modified bottom boards, Varroa destructor, Honeybee colonies

Procedia PDF Downloads 356
2616 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System

Authors: Qasem A. Alyazji

Abstract:

One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.

Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)

Procedia PDF Downloads 142
2615 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice

Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo

Abstract:

In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.

Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide

Procedia PDF Downloads 235
2614 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms

Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N. Venkatesh

Abstract:

The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2,Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated and powder forms and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. But over SO42-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.

Keywords: cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia

Procedia PDF Downloads 297
2613 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits

Authors: Sandeep Das

Abstract:

Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysis

Keywords: ANSYS, functionally graded material, lead-acid battery, terminal post

Procedia PDF Downloads 123
2612 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study

Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung

Abstract:

Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.

Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification

Procedia PDF Downloads 284
2611 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy

Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas

Abstract:

Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.

Keywords: solid Tumor, docetaxel, targeting, NGR ligand

Procedia PDF Downloads 466