Search results for: dual fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2400

Search results for: dual fuel

1170 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation

Procedia PDF Downloads 444
1169 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 164
1168 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: diesel engine, helicopter, simulation, environmental impact

Procedia PDF Downloads 572
1167 Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating

Authors: Prashant Sharma, Jyotsna Dutta Majumdar

Abstract:

The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating.

Keywords: plasma spraying, oxidation resistance, thermal barrier coating, microstructure, X-ray method

Procedia PDF Downloads 353
1166 Integrating Assurance and Risk Management of Complex Systems

Authors: Odd Ivar Haugen

Abstract:

This paper explores the relationship between assurance, risk, and risk management in the context of complex safety-related systems. It introduces a nuanced understanding of assurance and argues that the foundation for grounds for justified confidence in claims made about a complex system is related to the system behaviour. It emphasises the importance of knowledge as the cornerstone of assurance. The paper addresses the challenges of epistemic and aleatory uncertainties inherent in safety-critical systems. A systems approach is proposed to model emergent properties and complexity using the composition, environment, structure, mechanisms (CESM) metamodel, offering a structured framework for analysing system behaviour. The interplay between assurance and risk management is conceptualised through two models: the domain model and the control model. Assurance and risk management are mutually dependent on each other to reduce uncertainty and control risk levels. This work highlights the dual roles of assurance in risk management, acting as an epistemic actuator on the one side and providing feedback about the strength of the justification on the other. Assurance and risk management have inseparable roles in ensuring safety in complex systems.

Keywords: assurance, CESM metamodel, confidence, emergent properties, knowledge, objectivity, risk, system behaviour, system safety

Procedia PDF Downloads 12
1165 Lean Mass and Fat Mass Distribution in Ukrainian Postmenopausal Women with Abdominal Овesity and Metabolic Syndrome

Authors: V. V. Povoroznyuk, Lar. P. Martynyuk, N. I. Dzerovych, Lil. P. Martyntyuk

Abstract:

Objective: Menopause-related changes in female body are associated with the greater risk of metabolic syndrome (MS), which includes obesity, dyslipidemia, impaired glucose tolerance, hypertension. The aim of our study was to reveal peculiarities of fat and lean mass distribution between postmenopausal women with abdominal obesity and with MS. Materials and Methods: The sample consisted of 43 postmenopausal 60 – 69 years old women (age: mean = 64,8; S.D. = 0,4); duration of menopause: mean = 14,5; S.D.= 0,9). The diagnosis of MS was considered according to IDF (2005 yr) criteria. Lean and fat mass distrubution were measured by dual-energy X-ray absortiometry, and were compared for the cohorts with and without MS. Data were analyzed using Statistical Package 6.0 (Statsoft). Results: Findings revealed that 24 (55,8 %) of postmenopausal women had MS. In patients with and without MS compared, fat mass was higher in the former group (41248,25±2263,89 and 29817,68±2397,78 respectively; F=11,9; p=0,001) and at different body regions also: gynoid fat (6563,72±348,19 and 5115,21±392,43 respectively; F=7,6; p=0,008), android fat (3815,45±200,8128 and 2798,15±282,79 respectively; F=9,06; p=0,004. Lean mass comparing didn’t show significant differences in female with and without MS (42548,0±1239,18 and 40667,53±1223,78 respectively; F=1,1; p=0,29) and at different body regions also. Conclusion: These findings suggest that in postmenopausal women with MS there is prevalence of fat mass without increasing of lean mass quantity in compare to female with abdominal obesity without MS.

Keywords: lean mass, fat mass, овesity, metabolic syndrome, women, postmenopausal period

Procedia PDF Downloads 461
1164 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 136
1163 Developing High-Definition Flood Inundation Maps (HD-Fims) Using Raster Adjustment with Scenario Profiles (RASPTM)

Authors: Robert Jacobsen

Abstract:

Flood inundation maps (FIMs) are an essential tool in communicating flood threat scenarios to the public as well as in floodplain governance. With an increasing demand for online raster FIMs, the FIM State-of-the-Practice (SOP) is rapidly advancing to meet the dual requirements for high-resolution and high-accuracy—or High-Definition. Importantly, today’s technology also enables the resolution of problems of local—neighborhood-scale—bias errors that often occur in FIMs, even with the use of SOP two-dimensional flood modeling. To facilitate the development of HD-FIMs, a new GIS method--Raster Adjustment with Scenario Profiles, RASPTM—is described for adjusting kernel raster FIMs to match refined scenario profiles. With RASPTM, flood professionals can prepare HD-FIMs for a wide range of scenarios with available kernel rasters, including kernel rasters prepared from vector FIMs. The paper provides detailed procedures for RASPTM, along with an example of applying RASPTM to prepare an HD-FIM for the August 2016 Flood in Louisiana using both an SOP kernel raster and a kernel raster derived from an older vector-based flood insurance rate map. The accuracy of the HD-FIMs achieved with the application of RASPTM to the two kernel rasters is evaluated.

Keywords: hydrology, mapping, high-definition, inundation

Procedia PDF Downloads 82
1162 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech

Procedia PDF Downloads 154
1161 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.

Keywords: bus, consumption energy, GHG, production, simulation, train

Procedia PDF Downloads 444
1160 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 172
1159 Randomness in Cybertext: A Study on Computer-Generated Poetry from the Perspective of Semiotics

Authors: Hongliang Zhang

Abstract:

The use of chance procedures and randomizers in poetry-writing can be traced back to surrealist works, which, by appealing to Sigmund Freud's theories, were still logocentrism. In the 1960s, random permutation and combination were extensively used by the Oulipo, John Cage and Jackson Mac Low, which further deconstructed the metaphysical presence of writing. Today, the randomly-generated digital poetry has emerged as a genre of cybertext which should be co-authored by readers. At the same time, the classical theories have now been updated by cybernetics and media theories. N· Katherine Hayles put forward the concept of ‘the floating signifiers’ by Jacques Lacan to be the ‘the flickering signifiers’ , arguing that the technology per se has become a part of the textual production. This paper makes a historical review of the computer-generated poetry in the perspective of semiotics, emphasizing that the randomly-generated digital poetry which hands over the dual tasks of both interpretation and writing to the readers demonstrates the intervention of media technology in literature. With the participation of computerized algorithm and programming languages, poems randomly generated by computers have not only blurred the boundary between encoder and decoder, but also raises the issue of human-machine. It is also a significant feature of the cybertext that the productive process of the text is full of randomness.

Keywords: cybertext, digital poetry, poetry generator, semiotics

Procedia PDF Downloads 175
1158 Military Use of Artificial Intelligence under International Humanitarian Law: Insights from Canada

Authors: Mahshid TalebianKiakalayeh

Abstract:

As AI technologies can be used by both civilians and soldiers, it is vital to consider the consequences emanating from AI military as well as civilian use. Indeed, many of the same technologies can have a dual-use. This paper will explore the military uses of AI and assess its compliance with international legal norms. AI developments not only have changed the capacity of the military to conduct complex operations but have also increased legal concerns. The existence of a potential legal vacuum in legal principles on the military use of AI indicates the necessity of more study on compliance with International Humanitarian Law (IHL), the branch of international law which governs the conduct of hostilities. While capabilities of new means of military AI continue to advance at incredible rates, this body of law is seeking to limit the methods of warfare protecting civilian persons who are not participating in an armed conflict. Implementing AI in the military realm would result in potential issues, including ethical and legal challenges. For instance, when intelligence can perform any warfare task without any human involvement, a range of humanitarian debates will be raised as to whether this technology might distinguish between military and civilian targets or not. This is mainly because AI in fully military systems would not seem to carry legal and ethical judgment, which can interfere with IHL principles. The paper will take, as a case study, Canada’s compliance with IHL in the area of AI and the related legal issues that are likely to arise as this country continues to develop military uses of AI.

Keywords: artificial intelligence, military use, international humanitarian law, the Canadian perspective

Procedia PDF Downloads 189
1157 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam

Authors: T. M. Ismail, M. A. El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.

Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia PDF Downloads 407
1156 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 144
1155 Social and Cognitive Stress Impact on Neuroscience and PTSD

Authors: Sadra Abbasi

Abstract:

The complex connection between psychological stress and the onset of different diseases has been an ongoing issue in the mental health field for a long time. Multiple studies have demonstrated that long-term stress can greatly heighten the likelihood of developing health issues like heart disease, cancer, arthritis, and severe depression. Recent research in cognitive science has provided insight into the intricate processes involved in posttraumatic stress disorder (PTSD), suggesting that distinct memory systems are accountable for both vivid reliving and normal autobiographical memories of traumatic incidents, as proposed by dual representation theory. This theory has important consequences for our comprehension of the neural mechanisms involved in fear and behavior related to threats, highlighting the amygdala-hippocampus-medial prefrontal cortex circuit as a crucial component in this process. This particular circuit, extensively researched in behavioral neuroscience, is essential for regulating the body's reactions to stress and trauma. This review will examine how incorporating a modern neuroscience viewpoint into an integrative case formulation offers a current way to comprehend the intricate connections among psychological stress, trauma, and disease.

Keywords: social, cognitive, stress, neuroscience, behavior, PTSD

Procedia PDF Downloads 37
1154 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 275
1153 Economic Evaluation of Biogas and Biomethane from Animal Manure

Authors: Shahab Shafayyan, Tara Naderi

Abstract:

Biogas is the product of decomposition of organic materials. A variety of sources, including animal wastes, municipal solid wastes, sewage and agricultural wastes may be used to produce biogas in an anaerobic process. The main forming material of biogas is methane gas, which can be used directly in a variety of ways, such as heating and as fuel, which is very common in a number of countries, such as China and India. In this article, the cost of biogas production from animal fertilizers, and its refined form, bio methane gas has been studied and it is shown that it can be an alternative for natural gas in terms of costs, in the near future. The cost of biogas purification to biomethane is more than three times the cost of biogas production for an average unit. Biomethane production costs, calculated for a small unit, is about $9/MMBTU and for an average unit is about $5.9/MMBTU.

Keywords: biogas, biomethane, anaerobic digestion, economic evaluation

Procedia PDF Downloads 490
1152 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana

Authors: Joshua Osondu

Abstract:

This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.

Keywords: artificial intelligence, teacher, learner, students, policy response

Procedia PDF Downloads 92
1151 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 355
1150 Electric Propulsion System Development for High Floor Trolley Bus

Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari

Abstract:

The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.

Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle

Procedia PDF Downloads 359
1149 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model

Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet

Abstract:

This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.

Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application

Procedia PDF Downloads 114
1148 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 353
1147 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 230
1146 Evaluation of a 50MW Two-Axis Tracking Photovoltaic Power Plant for Al-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis

Authors: Yasser Aldali, Farag Ahwide

Abstract:

This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years.

Keywords: large PV power plant, solar energy, environmental impact, dual-axis tracking system

Procedia PDF Downloads 398
1145 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 170
1144 Small Scale Batch Anaerobic Digestion of Rice Straw

Authors: V. H. Nguyen, A. Castalone, C. Jamieson, M. Gummert

Abstract:

Rice straw is an abundant biomass resource in Asian countries that can be used for bioenergy. In continuously flooded rice fields, it can be removed without reducing the levels of soil organic matter. One suitable bioenergy technology is anaerobic digestion (AD), but it needs to be further verified using rice straw as a feedstock. For this study, a batch AD system was developed using rice straw and cow dung. It is low cost, farm scale, with the batch capacity ranging from 5 kg to 200 kg of straw mixed with 10% of cow dung. The net energy balance obtained was from 3000 to 4000 MJ per ton of straw input at 15-18% moisture content. Net output energy obtained from biogas and digestate ranged from 4000 to 5000 MJ per ton of straw. This indicates AD as a potential solution for converting rice straw from a waste to a clean fuel, reducing the environmental footprint caused by current disposal practices.

Keywords: rice straw, anaerobic digestion, biogas, bioenergy

Procedia PDF Downloads 353
1143 Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait

Authors: Nabil A. Ahmed, Nasser A. N. Mhaisen

Abstract:

The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years.

Keywords: photovoltaics, residential buildings, electrical grid, production capacity, on-grid, power generation

Procedia PDF Downloads 494
1142 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel

Authors: Jay J. Vora, Vishvesh J. Badheka

Abstract:

This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.

Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding

Procedia PDF Downloads 208
1141 Region-Specific Secretory Protein, α2M, in Male Reproductive Tract of the Blue Crab And Its Dynamics during Sperm transit towards Female Spermatheca

Authors: Thanyaporn Senarai, Rapeepun Vanichviriyakit, Shinji Miyata, Chihiro Sato, Prapee Sretarugsa, Wattana Weerachatyanukul, Ken Kitajima

Abstract:

In this study, we characterized a region-specific 250 kDa protein that was secreted of MSD fluid, which is believed to play dual functions in forming a spermatophoric wall for sperm physical protection, and in sperm membrane modification as part of sperm maturation process. The partial amino acid sequence and N-terminal sequencing revealed that the MSD-specific 250 kDa protein showed a high similarity with a plasma-rich protein, α-2 macroglobulin (α2M), so termed pp-α2M. This protein was a large glycoprotein contained predominantly mannose and GlcNAc. The expression of pp-α2M mRNA was detected in spermatic duct (SD), androgenic gland (AG) and hematopoietic tissue, while the protein expression was rather specific to the apical cytoplasm of MSD epithelium. The secretory pp-α2M in MSD fluid was acquired onto the MSD sperm membrane and was also found within the matrix of the acrosome. Distally, pp-α2M was removed from spermathecal sperm membrane, while its level kept constant in the sperm AC. Together the results indicate that pp-α2M is a 250 kDa region-specific secretory protein which plays roles in sperm physical protection and also acts as maturation factor in the P. pelagicus sperm.

Keywords: alpha-2 macroglobulin, blue swimming crab, sperm maturation, spermatic duct

Procedia PDF Downloads 329