Search results for: creep damage property
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3939

Search results for: creep damage property

2709 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 84
2708 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 119
2707 Protection of Television Programme Formats in Comparative Law

Authors: Mustafa Arikan, Ibrahim Ercan

Abstract:

In this paper, protection of program formats was investigated in terms of program formats. Protection of program formats was studied in the French Law in the sense of competition law and CPI. Since the English Judicial system exhibits differences from the legal system of Continental Europe, its investigation bears a special significance. The subject was also handled in German Law at length. Indeed, German Law was investigated in detail within the overall framework of the study. Here, the court decisions in the German Law and the views in the doctrine were expressed in general. There are many court decisions in the American legal system concerning the subject. These decisions also present alternatives in terms of a solution to the problem.

Keywords: comparative law, protection of television programme formats, intellectual property, american legal system

Procedia PDF Downloads 312
2706 Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 496
2705 Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)

Authors: Shahriar Ghammamy, Mehrnoosh Saboony

Abstract:

Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin.

Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM

Procedia PDF Downloads 390
2704 Development and Evaluation of Simvastatin Based Self Nanoemulsifying Drug Delivery System (SNEDDS) for Treatment of Alzheimer's Disease

Authors: Hardeep

Abstract:

The aim of this research work to improve the solubility and bioavailability of Simvastatin using a self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Validation of a method for accuracy, repeatability, Interday and intraday precision, ruggedness, and robustness were within acceptable limits. The liquid SNEDDS was prepared and optimized using a ternary phase diagram, thermodynamic, centrifugation and cloud point studies. The globule size of optimized formulations was less than 200 nm which could be an acceptable nanoemulsion size range. The mean droplet size, drug loading, PDI and zeta potential were found to be 141.0 nm, 92.22%, 0.23 and -10.13 mV and 153.5nm, 93.89 % ,0.41 and -11.7 mV and 164.26 nm, 95.26% , 0.41 and -10.66mV respectively.

Keywords: simvastatin, self nanoemulsifying drug delivery system, solubility, bioavailability

Procedia PDF Downloads 181
2703 The Effect of the Incorporation of Glass Powder into Cement Sorel

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.

Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 408
2702 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation

Authors: Y. C. Ching, K. H. Chong

Abstract:

The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.

Keywords: kenaf fiber, polyester, tensile, thermal stability

Procedia PDF Downloads 343
2701 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 321
2700 Numerical Study of Fire Propagation in Confined and Open Area

Authors: Hadj Miloua, Abbes Azzi

Abstract:

The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.

Keywords: fire, road tunnel, simulation, vegetation, wildland

Procedia PDF Downloads 492
2699 From Battles to Balance and Back: Document Analysis of EU Copyright in the Digital Era

Authors: Anette Alén

Abstract:

Intellectual property (IP) regimes have traditionally been designed to integrate various conflicting elements stemming from private entitlement and the public good. In IP laws and regulations, this design takes the form of specific uses of protected subject-matter without the right-holder’s consent, or exhaustion of exclusive rights upon market release, and the like. More recently, the pursuit of ‘balance’ has gained ground in the conceptualization of these conflicting elements both in terms of IP law and related policy. This can be seen, for example, in European Union (EU) copyright regime, where ‘balance’ has become a key element in argumentation, backed up by fundamental rights reasoning. This development also entails an ever-expanding dialogue between the IP regime and the constitutional safeguards for property, free speech, and privacy, among others. This study analyses the concept of ‘balance’ in EU copyright law: the research task is to examine the contents of the concept of ‘balance’ and the way it is operationalized and pursued, thereby producing new knowledge on the role and manifestations of ‘balance’ in recent copyright case law and regulatory instruments in the EU. The study discusses two particular pieces of legislation, the EU Digital Single Market (DSM) Copyright Directive (EU) 2019/790 and the finalized EU Artificial Intelligence (AI) Act, including some of the key preparatory materials, as well as EU Court of Justice (CJEU) case law pertaining to copyright in the digital era. The material is examined by means of document analysis, mapping the ways ‘balance’ is approached and conceptualized in the documents. Similarly, the interaction of fundamental rights as part of the balancing act is also analyzed. Doctrinal study of law is also employed in the analysis of legal sources. This study suggests that the pursuit of balance is, for its part, conducive to new battles, largely due to the advancement of digitalization and more recent developments in artificial intelligence. Indeed, the ‘balancing act’ rather presents itself as a way to bypass or even solidify some of the conflicting interests in a complex global digital economy. Indeed, such a conceptualization, especially when accompanied by non-critical or strategically driven fundamental rights argumentation, runs counter to the genuine acknowledgment of new types of conflicting interests in the copyright regime. Therefore, a more radical approach, including critical analysis of the normative basis and fundamental rights implications of the concept of ‘balance’, is required to readjust copyright law and regulations for the digital era. Notwithstanding the focus on executing the study in the context of the EU copyright regime, the results bear wider significance for the digital economy, especially due to the platform liability regime in the DSM Directive and with the AI Act including objectives of a ‘level playing field’ whereby compliance with EU copyright rules seems to be expected among system providers.

Keywords: balance, copyright, fundamental rights, platform liability, artificial intelligence

Procedia PDF Downloads 18
2698 Simulation of Remove the Fouling on the in vivo By Using MHD

Authors: Farhad Aalizadeh, Ali Moosavi

Abstract:

When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form.

Keywords: MHD, fouling, in-vivo, blood clots, simulation

Procedia PDF Downloads 453
2697 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 67
2696 Climate Change Effect on the Dynamic Modulus Property of Asphalt Concrete in Southern England Using UKCP09

Authors: David Idiata

Abstract:

This paper is directed at using the UKCP09 climate change projection tool to predict the effect of climate change on the dynamic modulus of asphalt concrete is Southern England knowing that there is a pressing challenge directly facing infrastructure in the urban cities in the world today due to climate change. Climate change causes change in the environment which in turn impacts on the long-term structural performance of structures. From the projection values obtained, it was discovered that as the temperature increases, the dynamic modulus reduces and this effect was more on the South West which have temperature range of 36.8 oC to 48.3 oC and dynamic modulus range of 2,212 MPa to 1256 MPa.

Keywords: dynamic modulus, asphalt concrete, UKCP09, Southern England

Procedia PDF Downloads 347
2695 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus

Authors: Debamitra Chakravorty, Pratap K. Parida

Abstract:

Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.

Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design

Procedia PDF Downloads 121
2694 Efficient DCT Architectures

Authors: Mr. P. Suryaprasad, R. Lalitha

Abstract:

This paper presents an efficient area and delay architectures for the implementation of one dimensional and two dimensional discrete cosine transform (DCT). These are supported to different lengths (4, 8, 16, and 32). DCT blocks are used in the different video coding standards for the image compression. The 2D- DCT calculation is made using the 2D-DCT separability property, such that the whole architecture is divided into two 1D-DCT calculations by using a transpose buffer. Based on the existing 1D-DCT architecture two different types of 2D-DCT architectures, folded and parallel types are implemented. Both of these two structures use the same transpose buffer. Proposed transpose buffer occupies less area and high speed than existing transpose buffer. Hence the area, low power and delay of both the 2D-DCT architectures are reduced.

Keywords: transposition buffer, video compression, discrete cosine transform, high efficiency video coding, two dimensional picture

Procedia PDF Downloads 504
2693 Screening Maize for Compatibility with F. Oxysporum to Enhance Striga asiatica (L.) Kuntze Resistance

Authors: Admire Isaac Tichafa Shayanowako, Mark Laing, Hussein Shimelis

Abstract:

Striga asiatica is among the leading abiotic constraints to maize production under small-holder farming communities in southern African. However, confirmed sources of resistance to the parasitic weed are still limited. Conventional breeding programmes have been progressing slowly due to the complex nature of the inheritance of Striga resistance, hence there is a need for more innovative approaches. This study aimed to achieve partial resistance as well as to breed for compatibility with Fusarium oxysporum fsp strigae, a soil fungus that is highly specific in its pathogenicity. The agar gel and paper roll assays in conjunction with a glass house pot trial were done to select genotypes based on their potential to stimulate germination of Striga and to test the efficacy of Fusarium oxysporum as a biocontrol agent. Results from agar gel assays showed a moderate to high potential in the release of Strigalactones among the 33 OPVs. Maximum Striga germination distances from the host root of 1.38 cm and up to 46% germination were observed in most of the populations. Considerable resistance was observed in a landrace ‘8lines’ which had the least Striga germination percentage (19%) with a maximum distance of 0.93 cm compared to the resistant check Z-DPLO-DTC1 that had 23% germination at a distance of 1.4cm. The number of fusarium colony forming units significantly deferred (P < 0.05) amongst the genotypes growing between germination papers. The number of crown roots, length of primary root and fresh weight of shoot and roots were highly correlated with concentration of fusarium macrospore counts. Pot trials showed significant differences between the fusarium coated and the uncoated treatments in terms of plant height, leaf counts, anthesis-silks intervals, Striga counts, Striga damage rating and Striga vigour. Striga emergence counts and Striga flowers were low in fusarium treated pots. Plants in fusarium treated pots had non-significant differences in height with the control treatment. This suggests that foxy 2 reduces the impact of Striga damage severity. Variability within fusarium treated genotypes with respect to traits under evaluation indicates the varying degree of compatibility with the biocontrol.

Keywords: maize, Striga asiaitca, resistance, compatibility, F. oxysporum

Procedia PDF Downloads 231
2692 A Pedagogical Study of Computational Design in a Simulated Building Information Modeling-Cloud Environment

Authors: Jaehwan Jung, Sung-Ah Kim

Abstract:

Building Information Modeling (BIM) provides project stakeholders with various information about property and geometry of entire component as a 3D object-based parametric building model. BIM represents a set of Information and solutions that are expected to improve collaborative work process and quality of the building design. To improve collaboration among project participants, the BIM model should provide the necessary information to remote participants in real time and manage the information in the process. The purpose of this paper is to propose a process model that can apply effective architectural design collaborative work process in architectural design education in BIM-Cloud environment.

Keywords: BIM, cloud computing, collaborative design, digital design education

Procedia PDF Downloads 411
2691 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 381
2690 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 261
2689 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 165
2688 Property of Diamond Coated Tools for Lapping Single-Crystal Sapphire Wafer

Authors: Feng Wei, Lu Wenzhuang, Cai Wenjun, Yu Yaping, Basnet Rabin, Zuo Dunwen

Abstract:

Diamond coatings were prepared on cemented carbide by hot filament chemical vapor deposition (HFCVD) method. Lapping experiment of single-crystal sapphire wafer was carried out using the prepared diamond coated tools. The diamond coatings and machined surface of the sapphire wafer were evaluated by SEM, laser confocal microscope and Raman spectrum. The results indicate that the lapping sapphire chips are small irregular debris and long thread-like debris. There is graphitization of diamond crystal during the lapping process. A low surface roughness can be obtained using a spherical grain diamond coated tool.

Keywords: lapping, nano-micro crystalline diamond coating, Raman spectrum, sapphire

Procedia PDF Downloads 471
2687 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subject to several hundred million stress cycles arising from the turbulent nature of the wind. This causes high-cycle fatigue which can govern tower design. The practice of maintaining the support structure after wind turbines reach its typical 20-year design life have become common, but without quantifying the changes in the reliability on the tower. There are several studies on this topic, but most of them are based on the S-N curve approach using the Miner’s rule damage summation method, the de-facto standard in the wind industry. However, the qualitative nature of Miner’s method makes desirable the use of fracture mechanics to measure the effects of fatigue in the capacity curve of the structure, which is important in order to evaluate the integrity and reliability of these towers. Temporal and spatially varying wind speed time histories are simulated based on power spectral density and coherence functions. Simulations are then applied to a SAP2000 finite element model and step-by-step analysis is used to obtain the stress time histories for a range of representative wind speeds expected during service conditions of the wind turbine. Rainflow method is then used to obtain cycle and stress range information of each of these time histories and a statistical analysis is performed to obtain the distribution parameters of each variable. Monte Carlo simulation is used here to evaluate crack growth over time in the tower base using the Paris-Erdogan equation. A nonlinear static pushover analysis to assess the capacity curve of the structure after a number of years is performed. The capacity curves are then used to evaluate the changes in reliability of a steel tower located in Oaxaca, Mexico, where wind energy facilities are expected to grow in the near future. Results show that fatigue on the tower base can have significant effects on the structural capacity of the wind turbine, especially after the 20-year design life when the crack growth curve starts behaving exponentially.

Keywords: crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia PDF Downloads 504
2686 A New Asset: The Role of Money in the Evolution of 20th Century Street Art

Authors: Eileen Kim

Abstract:

As socioeconomic disparities grew in New York during the 1970s, artists represented new values that came with the times. Street art, in particular, was birthed from a distinctly urban, fringe setting to ultimately become one of the most lucrative forms of art today. Examining the economic and psychological reasons behind the rise of street art, this paper delves into the development of the art market as a parallel insight into human behaviors and economic models such as supply and demand. The purpose of this study is to show the role of the increasingly divided socioeconomic classes and the rise of art collecting as an asset-building form. This study concludes that the iconography and market value of street art represented distinct values that came from a series of intertwined social matters such as racial tensions and revolutions in industrial innovation.

Keywords: art industry, cultural representation, ethnicity, markets, public property, social classes, street art

Procedia PDF Downloads 210
2685 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 376
2684 Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn.

Keywords: shape memory effect, martensitic transformation, twinning and detwinning, layered structures

Procedia PDF Downloads 418
2683 Cultural Effects on the Performance of Non- Profit and For-Profit Microfinance Institutions

Authors: Patrick M. Stanton, William R. McCumber

Abstract:

Using a large dataset of more than 2,400 individual microfinance institutions (MFIs) from 120 countries from 1999 to 2016, this study finds that nearly half of the international MFIs operate as for-profit institutions. Formal institutions (business regulatory environment, property rights, social protection, and a developed financial sector) impact the likelihood of MFIs being for-profit across countries. Cultural differences across countries (power distance, individualism, masculinity, and indulgence) seem to be a factor in the legal status of the MFI (non-profit or for-profit). MFIs in countries with stronger formal institutions, a greater degree of power distance, and a higher degree of collectivism experience better financial and social performance.

Keywords: Hofstede cultural dimensions, international finance, microfinance institutions, non-profite

Procedia PDF Downloads 256
2682 Sustainable Development as a Part of Development and Foreign Trade in Turkey

Authors: Sadife Güngör, Sevilay Konya

Abstract:

Sustainable development is an economic development scope which covers the economic growth included environmental factors. With the help of economic development, the needs of the future generations are going to be met the needs. As it is aimed the environmental conscious, sustainable development focuses on decreasing the damage of natural sources. From this point of view, while sustainable development is environmentally conscious, it also improving the life standards of individuals. The relationship between development and foreign trade on sustainable development is theoretically searched in this study. In the second part, sustainable development at world and EU is searched and in the last part, the sustainability of trade and development in Turkey is stated.

Keywords: development, sustainable development, foreign trade, Turkey

Procedia PDF Downloads 436
2681 Structural and Magnetic Properties of Bi0.82La0.2Fe1-xCrxO3 Nanoparticles

Authors: H. Nematifar, D. Sanavi Khoshnoud, S. Feyz

Abstract:

Bi0.82La0.2Fe1-xCrxO3 (BLFCxO, x = 0.0, 0.02, 0.05 and 0.08) nanoparticles were successfully synthesized by a sol-gel method. The X-ray diffraction (XRD) patterns indicate that the lattice parameters decrease for x ≤ 0.05, firstly, and then they increase for x > 0.05. A transformation from rhombohedral structure to orthorhombic structure occurs at x = 0.08. The transmission electron microscopy (TEM) analysis shows that the average nanoparticle size is about 60-70 nm. The remnant magnetisation (Mr) increases gradually with x to 0.02, then decreases with further increasing x up to 0.05, and finally enchases abruptly in x = 0.08. The coercivity (HC) increases gradually with x to 0.05, and then significantly reduced with increasing Cr substitution. The magnetic ordering temperature (TN) decreases with Cr doping concentration. The M-H curves of all samples exhibit a wasp-waist hysteresis loop in low magnetic region. This property can play an important role for the applications of some multiferroic nano-device.

Keywords: BiFeO3, sol-gel preparation, nanoparticles, magnetic materials, thermal analysis

Procedia PDF Downloads 292
2680 Prospection of Technology Production in Physiotherapy in Brazil

Authors: C. M. Priesnitz, G. Zanandrea, J. P. Fabris, S. L. Russo, M. E. Camargo

Abstract:

This study aimed to the prospection the physiotherapy area technological production registered with the National Intellectual Property Institute (INPI) in Brazil, for understand the evolution of the technological production in the country over time and visualize the distribution this production request in Brazil. There was an evolution in the technology landscape, where the average annual deposits had an increase of 102%, from 3.14 before the year 2004 to 6,33 after this date. It was found differences in the distribution of the number the deposits requested to each Brazilian region, being that of the 132 request, 68,9% were from the southeast region. The international patent classification evaluated the request deposits, and the more found numbers were A61H and A63B. So even with an improved panorama of technology production, this should still have incentives since it is an important tool for the development of the country.

Keywords: distribution, evolution, patent, physiotherapy, technological prospecting

Procedia PDF Downloads 312