Search results for: energy efficient programs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14192

Search results for: energy efficient programs

1652 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics

Authors: Weikang Gong, Chunhua Li

Abstract:

Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.

Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure

Procedia PDF Downloads 113
1651 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Wash Water

Authors: Syazwani Idrus, Charles Banks, Sonia Heaven

Abstract:

The effect of osmotic stress was carried out to determine the ability for biogas production in two types of digesters; anaerobic sludge blanket and anaerobic filters in treating wheat straw washed water. Two anaerobic filters (AF1 and 2) and two UASB reactors (U1 and 2) with working volumes of 1.5 L were employed at mesophilic temperatures (37°C). Digesters AF1 and two were seeded with an inoculum which had previously been fed on with a synthetic wastewater includingSodium Chloride and Potassium Chloride. Digesters U1 and two were seeded with 1 kg wet weight of granular sludge which had previously been treating paper mill effluent. During the first 48 days, all digesters were successfully acclimated with synthetic wastewater (SW) to organic loading rate (OLR) of 6 g COD l^-1 day-1. Specific methane production (SMP) of 0.333 l CH4 g-1 COD). The feed was then changed to wash water from a washing operation to reduce the salt content of wheat straw (wheat straw wash water, WSW) at the same OLR. SMP fell sharply in all reactors to less than 0.1 l CH4 g^-1 COD, with the AF affected more than the UASB. The OLR was reduced to 2.5 g COD l^-1 day^-1 to allow adaptation to WSW, and both the UASB and the AF reactors achieved an SMP of 0.21 l CH4 g^-1 COD added at 82% of COD removal. This study also revealed the accumulation of potassium (K) inside the UASB granules to a concentration of 4.5 mg K g^-1 wet weight of granular sludge. The phenomenon of lower SMP and accumulation of K indicates the effect of osmotic stress when fed on WSW. This finding is consistent with the theory that methanogenic organisms operate a Potassium pump to maintain ionic equilibrium, and as this is an energy-driven process, it will, therefore, reduce the overall methane yield.

Keywords: wheat straw wash water, upflow anaerobic sludge blanket, anaerobic filter, specific methane production, osmotic stress

Procedia PDF Downloads 361
1650 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 219
1649 An Assessment of Involuntary Migration in India: Understanding Issues and Challenges

Authors: Rajni Singh, Rakesh Mishra, Mukunda Upadhyay

Abstract:

India is among the nations born out of partition that led to one of the greatest forced migrations that marked the past century. The Indian subcontinent got partitioned into two nation-states, namely India and Pakistan. This led to an unexampled mass displacement of people accounting for about 20 million in the subcontinent as a whole. This exemplifies the socio-political version of displacement, but there are other identified reasons leading to human displacement viz., natural calamities, development projects and people-trafficking and smuggling. Although forced migrations are rare in incidence, they are mostly region-specific and a very less percentage of population appears to be affected by it. However, when this percentage is transcripted in terms of volume, the real impact created by such migration can be realized. Forced migration is thus an issue related to the lives of many people and requires to be addressed with proper intervention. Forced or involuntary migration decimates peoples' assets while taking from them their most basic resources and makes them migrate without planning and intention. This in most cases proves to be a burden on the destination resources. Thus, the question related to their security concerns arise profoundly with regard to the protection and safeguards to these migrants who need help at the place of destination. This brings the human security dimension of forced migration into picture. The present study is an analysis of a sample of 1501 persons by NSSO in India (National Sample Survey Organisation), which identifies three reasons for forced migration- natural disaster, social/political problem and displacement by development projects. It was observed that, of the total forced migrants, about 4/5th comprised of the internally displaced persons. However, there was a huge inflow of such migrants to the country from across the borders also, the major contributing countries being Bangladesh, Pakistan, Sri Lanka, Gulf countries and Nepal. Among the three reasons for involuntary migration, social and political problem is the most prominent in displacing huge masses of population; it is also the reason where the share of international migrants to that of internally displaced is higher compared to the other two factors /reasons. Second to political and social problems, natural calamities displaced a high portion of the involuntary migrants. The present paper examines the factors which increase people's vulnerability to forced migration. On perusing the background characteristics of the migrants it was seen that those who were economically weak and socially fragile are more susceptible to migration. Therefore, getting an insight about this fragile group of society is required so that government policies can benefit these in the most efficient and targeted manner.

Keywords: involuntary migration, displacement, natural disaster, social and political problem

Procedia PDF Downloads 343
1648 Ion Beam Polishing of Si in W/Si Multilayer X-Ray Analyzers

Authors: Roman Medvedev, Andrey Yakshin, Konstantin Nikolaev, Sergey Yakunin, Fred Bijkerk

Abstract:

Multilayer structures are used as spectroscopic elements in fluorescence analysis. These serve the purpose of analyzing soft x-ray emission spectra of materials upon excitation by x-rays or electrons. The analysis then allows quantitative determination of the x-ray emitting elements in the materials. Shorter wavelength range for this application, below 2.5nm, can be covered by using short period multilayers, with a period of 2.5 nm and lower. Thus the detrimental effect on the reflectivity of morphological roughness between materials of the multilayers becomes increasingly pronounced. Ion beam polishing was previously shown to be effective in reducing roughness in some multilayer systems with Si. In this work, we explored W/Si multilayers with the period of 2.5 nm. Si layers were polishing by Ar ions, employing low energy ions, 100 and 80 eV, with the etched Si thickness being in the range 0.1 to 0.5 nm. CuK X-ray diffuse scattering measurements revealed a significant reduction in the diffused scattering in the polished multilayers. However, Grazing Incidence CuK X-ray showed only a marginal reduction of the overall roughness of the systems. Still, measurements of the structures with Grazing Incidence Small Angle X-ray scattering indicated that the vertical correlation length of roughness was strongly reduced in the polished multilayers. These results together suggest that polishing results in the reduction of the vertical propagation of roughness from layer to layer, while only slightly affecting the overall roughness. This phenomenon can be explained by ion-induced surface roughening inherently present in the ion polishing methods. Alternatively, ion-induced densification of thin Si films should also be considered. Finally, the reflectivity of 40% at 0.84 nm at grazing incidence of 9 degrees has been obtained in this work for W/Si multilayers. Analysis of the obtained results is expected to lead to further progress in reflectance.

Keywords: interface roughness, ion polishing, multilayer structures, W/Si

Procedia PDF Downloads 125
1647 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 325
1646 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.

Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 247
1645 Analyzing the Shearing-Layer Concept Applied to Urban Green System

Authors: S. Pushkar, O. Verbitsky

Abstract:

Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.

Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture

Procedia PDF Downloads 567
1644 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 203
1643 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 119
1642 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 132
1641 Russia’s Role in Resolving the Nagorno-Karabakh Conflict 1990-2020

Authors: Friba Haidari

Abstract:

The aim of the study is to identify Russia's role in managing the Nagorno-Karabakh conflict betweenArmenia and Azerbaijan during the years 1990 to 2020. The Nagorno-Karabakh crisis can not be considered a mere territorial conflict but also a crossroads of interests of foreign actors. Geopolitical rivalries and the access to energy by regional and trans-regional actors have complicated the crisis and created a security challenge in the region, which is likely to escalate into a full-blown war between the parties involved. The geopolitical situation of Nagorno-Karabakh and its current situation have affected all peripheral states in some way. Russia, as one of the main actors in this scene, has been actively involved since the beginning of the crisis. The Russians have always sought to strengthen their influence and presence in the Nagorno-Karabakh crisis. Russia's efforts to weaken the role of the Minsk Group, The presence of Western actors, and the deployment of Russian forces in the disputed area can be assessed in this context. However, this study seeks to answer the question of what role did Russia play in managing the Nagorno-Karabakh conflict between Armenia and Azerbaijan between 1990 and 2020? The study hypothesizes that Russia has prevented the escalation of the Nagorno-Karabakh conflict through mediation and some coercion. This study is divided into four parts, including conflict management as a theoretical framework; Examining the competition and the role of actors in the Caucasus region, especially the role of the Minsk Group, and what approach or tools and methods Russia has used in its foreign policy in managing the conflict, and finally what are the relations between the countries involved and what will be Russia's role in the future? Was discussed. This study examines the analysis and transfer of ideas and information using authoritative international sources with an explanatory method and shares its results with everyone.

Keywords: Russia, conflict, nagorno-karabakh, management

Procedia PDF Downloads 79
1640 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 56
1639 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 173
1638 Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)

Authors: Shiwani Bhatnagar, K. K. Srivastava, Sangeeta Singh, Ameen Ullah Khan, Bundesh Kumar, Lokendra Singh Rathore

Abstract:

From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed.

Keywords: azadirachta indica, alternaria leaf spot, laspeyresia koenigana, management

Procedia PDF Downloads 463
1637 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing

Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale

Abstract:

The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.

Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability

Procedia PDF Downloads 117
1636 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia

Authors: Giuliana Murfet, Heidi Behrens

Abstract:

Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.

Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional

Procedia PDF Downloads 221
1635 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 151
1634 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 87
1633 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 78
1632 Outdoor Physical Play as Critical to Early Childhood Development: Findings from Saudi Arabia

Authors: Rana S. Alghamdi

Abstract:

Play in early childhood education has been stifled across the world due to an overemphasis on academic achievement and a reduced focus on physical play and motor development. In Saudi Arabia, teachers reticent to allocate more time to play for fear of retribution from parents and administrators that children are losing academic seat time. This practice has proven to be detrimental to the social, emotional, physical, and cognitive development of children. Teachers are pressured to prioritize Arabic, math, and science while providing minimal time for physical activities. Administrators tend to push for an ever-increasing emphasis on academia in order to achieve higher test scores. However, young children often find it difficult to concentrate if they are not able to get out energy through physical play. Furthermore, many youth educators are not qualified to oversee physical activities, and many facilities are unprepared for safe, outdoor play. This results in children getting little to no outdoor activity. They are stuck in a strict academic regimen that may dampen the creativity and imagination easily fostered through cooperative play. For a stronger educational system and more well-rounded students, Saudi schools should enact policies that extend the number of required hours dedicated to outdoor and physical play. They should also offer training for unqualified teachers. This training should focus on the benefits of physical play and instruct them on how to facilitate these activities safely and effectively. School administrators must focus on providing adequate equipment and safe environments for the purpose of outdoor play and education. In doing so, they will be setting their students up for a successful future and improving their abilities in all aspects of education.

Keywords: early childhood education, play, outdoor, Saudi Arabia

Procedia PDF Downloads 141
1631 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model

Authors: T. Thein, S. Kalyar Myo

Abstract:

Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.

Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)

Procedia PDF Downloads 275
1630 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh

Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin

Abstract:

In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.

Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model

Procedia PDF Downloads 140
1629 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 116
1628 Planning a European Policy for Increasing Graduate Population: The Conditions That Count

Authors: Alice Civera, Mattia Cattaneo, Michele Meoli, Stefano Paleari

Abstract:

Despite the fact that more equal access to higher education has been an objective public policy for several decades, little is known about the effectiveness of alternative means for achieving such goal. Indeed, nowadays, high level of graduate population can be observed both in countries with the high and low level of fees, or high and low level of public expenditure in higher education. This paper surveys the extant literature providing some background on the economic concepts of the higher education market, and reviews key determinants of demand and supply. A theoretical model of aggregate demand and supply of higher education is derived, with the aim to facilitate the understanding of the challenges in today’s higher education systems, as well as the opportunities for development. The model is validated on some exemplary case studies describing the different relationship between the level of public investment and levels of graduate population and helps to derive general implications. In addition, using a two-stage least squares model, we build a macroeconomic model of supply and demand for European higher education. The model allows interpreting policies shifting either the supply or the demand for higher education, and allows taking into consideration contextual conditions with the aim of comparing divergent policies under a common framework. Results show that the same policy objective (i.e., increasing graduate population) can be obtained by shifting either the demand function (i.e., by strengthening student aid) or the supply function (i.e., by directly supporting higher education institutions). Under this theoretical perspective, the level of tuition fees is irrelevant, and empirically we can observe high levels of graduate population in both countries with high (i.e., the UK) or low (i.e., Germany) levels of tuition fees. In practice, this model provides a conceptual framework to help better understanding what are the external conditions that need to be considered, when planning a policy for increasing graduate population. Extrapolating a policy from results in different countries, under this perspective, is a poor solution when contingent factors are not addressed. The second implication of this conceptual framework is that policies addressing the supply or the demand function needs to address different contingencies. In other words, a government aiming at increasing graduate population needs to implement complementary policies, designing them according to the side of the market that is interested. For example, a ‘supply-driven’ intervention, through the direct financial support of higher education institutions, needs to address the issue of institutions’ moral hazard, by creating incentives to supply higher education services in efficient conditions. By contrast, a ‘demand-driven’ policy, providing student aids, need to tackle the students’ moral hazard, by creating an incentive to responsible behavior.

Keywords: graduates, higher education, higher education policies, tuition fees

Procedia PDF Downloads 153
1627 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: automobiles, welding, corrosion, lap joints, Micro XRD

Procedia PDF Downloads 117
1626 Parental Involvement and Students' Outcomes: A Study in a Special Education School in Singapore

Authors: E. Er, Y. S. Cheng

Abstract:

The role of parents and caregivers in their children’s education is pivotal. Parental involvement (PI) is often associated with a range of student outcomes. This includes academic achievements, socioemotional development, adaptive skills, physical fitness and school attendance. This study is the first in Singapore to (1) explore the relationship between parental involvement and student outcomes; (2) determine the effects of family structure and socioeconomic status (SES) on parental involvement and (3) investigate factors that inform involvement in parents of children with specific developmental disabilities. Approval for the study was obtained from Nanyang Technological University’s Institutional Review Board in Singapore. The revised version of a comprehensive theoretical model on parental involvement was used as the theoretical framework in this study. Parents were recruited from a SPED school in Singapore which caters to school-aged children (7 to 21 years old). Pearson’s product moment correlation, analysis of variance and multiple regression analyses were used as statistical techniques in this study. Results indicate that there are significant associations between parental involvement and educational outcomes in students with developmental disabilities. Next, SES has a significant impact on levels of parental involvement. In addition, parents in the current study reported being more involved at home, in school activities and the community, when teachers specifically requested their involvement. Home-based involvement was also predicted by parents’ perceptions of their time and energy, efficacy and beliefs in supporting their child’s education, as well as their children’s invitations to be more involved. An interesting and counterintuitive inverse relationship was found between general school invitations and parental involvement at home. Research findings are further discussed, and suggestions are put forth to increase involvement for this specific group of parents.

Keywords: autism, developmental disabilities, intellectual disabilities, parental involvement, Singapore

Procedia PDF Downloads 187
1625 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management

Authors: M. Macchiaroli, L. Dolores, V. Pellecchia

Abstract:

With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.

Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff

Procedia PDF Downloads 110
1624 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers

Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley

Abstract:

Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.

Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting

Procedia PDF Downloads 211
1623 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 241