Search results for: thermal diffusion
3444 Pyrolysis and Combustion Kinetics of Palm Kernel Shell Using Thermogravimetric Analysis
Authors: Kanit Manatura
Abstract:
The combustion and pyrolysis behavior of Palm Kernel Shell (PKS) were investigated in a thermogravimetric analyzer. A 10 mg sample of each biomass was heated from 30 °C to 800 °C at four heating rates (within 5, 10, 15 and 30 °C/min) in nitrogen and dry air flow of 20 ml/min instead of pyrolysis and combustion process respectively. During pyrolysis, thermal decomposition occurred on three different stages include dehydration, hemicellulose-cellulose and lignin decomposition on each temperature range. The TG/DTG curves showed the degradation behavior and the pyrolysis/combustion characteristics of the PKS samples which led to apply in thermogravimetric analysis. The kinetic factors including activation energy and pre-exponential factor were determined by the Coats-Redfern method. The obtained kinetic factors are used to simulate the thermal decomposition and compare with experimental data. Rising heating rate leads to shift the mass loss towards higher temperature.Keywords: combustion, palm kernel shell, pyrolysis, thermogravimetric analyzer
Procedia PDF Downloads 2313443 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks
Authors: Sara Gardideh, Mansoor Barati
Abstract:
The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.Keywords: particle size, thermogravimetry, thermal-treatment, serpentine
Procedia PDF Downloads 933442 A Theoretical Study of Accelerating Neutrons in LINAC Using Magnetic Gradient Method
Authors: Chunduru Amareswara Prasad
Abstract:
The main aim of this proposal it to reveal the secrets of the universe by accelerating neutrons. The proposal idea in its abridged version speaks about the possibility of making neutrons accelerate with help of thermal energy and magnetic energy under controlled conditions. Which is helpful in revealing the hidden secrets of the universe namely dark energy and in finding properties of Higgs boson. The paper mainly speaks about accelerating neutrons to near velocity of light in a LINAC, using magnetic energy by magnetic pressurizers. The center of mass energy of two colliding neutron beams is 94 GeV (~0.5c) can be achieved using this method. The conventional ways to accelerate neutrons has some constraints in accelerating them electromagnetically as they need to be separated from the Tritium or Deuterium nuclei. This magnetic gradient method provides efficient and simple way to accelerate neutrons.Keywords: neutron, acceleration, thermal energy, magnetic energy, Higgs boson
Procedia PDF Downloads 3303441 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)
Procedia PDF Downloads 3623440 Vitrification and Devitrification of Chromium Containing Tannery Ash
Authors: Savvas Varitis, Panagiotis Kavouras, George Kaimakamis, Eleni Pavlidou, George Vourlias, Konstantinos Chrysafis, Philomela Komninou, Theodoros Karakostas
Abstract:
Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment.Keywords: chromium containing tannery ash, glass ceramic materials, thermal processing, vitrification
Procedia PDF Downloads 3693439 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver
Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar
Abstract:
Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy
Procedia PDF Downloads 2023438 Independent Village Planning Based Eco Village and Save Energy in Region of Maritime Tourism
Authors: Muhamad Rasyid Angkotasan
Abstract:
Eco-village is an ecosystem where the countryside or urban communities that are inside trying to integrate the social environment with low impact way of life to achieve this, they integrate the various aspects of ecological design, agriculture permanent, ecological building and the alternative energy. Eco-village in question is eco-village conducted on of marine tourism areas, where natural resources are very good, without ignoring the global issue of climate change. Desperately needed a source of energy, which can support the fulfillment of energy needs in a sustainable. Fulfillment of energy sources that offer is the use or application of environmentally friendly technologies of usage is still very low in Indonesia, the technology namely the Ocean Thermal Energy Conversion (OTEC), OTEC is expected to be a source of the alternative energy, which can support the goal of eco-village of the region's of marine tourism.Keywords: eco village, saving energy, ocean thermal energy conversion, environmental engineering
Procedia PDF Downloads 4593437 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation
Authors: Md. S. Ansari, S. S. Motsa
Abstract:
In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation
Procedia PDF Downloads 3753436 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan
Authors: Jenan Abu Qadourah
Abstract:
The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential
Procedia PDF Downloads 1423435 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control
Authors: Sung-Jun Yoo, Kazuhide Ito
Abstract:
In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality
Procedia PDF Downloads 3633434 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers
Authors: Ahmed R. Ballil
Abstract:
Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design
Procedia PDF Downloads 1503433 An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed
Authors: Dang HuynhMinhTam, Kuang-Cong Lu, Yi-Hung Chen, Zhung-Yu Lin, Cheng-Siang Cheng
Abstract:
Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%.Keywords: carbon dioxide capture, regenerative thermal oxidizer, rotating packed bed, sodium hydroxide
Procedia PDF Downloads 633432 Properties of Sustainable Artificial Lightweight Aggregate
Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali
Abstract:
Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable
Procedia PDF Downloads 3283431 Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings
Authors: Joao A. Labrincha, Rui M. Novais, L. Senff, J. Carvalheiras
Abstract:
The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building.Keywords: waste-based geopolymers, thermal insulation, temperature regulation, moisture buffer
Procedia PDF Downloads 653430 Social Media Diffusion And Implications For Opinion Leadership In Northcentral Nigeria
Authors: Chuks Odiegwu-Enwerem
Abstract:
The classical notion of opinion leadership presupposes that the media is at the center of an effective and successful opinion leadership. Under this idea, an opinion leader is an active media user who consumes, understands, digests and interprets the messages for the understanding and acceptance/adoption by lower-end media users – whose access and understanding of media content are supposedly low. Because of their unique access to and presumed understanding of media functions and their content, opinion leaders are typically esteemed by those who look forward to and accept their opinions. Lazarsfeld and Katz’s two-step flow of communication theory is the basis of opinion leadership – propelled by limited access to the media. With the emergence and spread of social media and its unlimited access by all and sundry, however, the study interrogates the relevance and application of opinion leaders and, by implication, the two-step flow communication theory in Nigeria’s Northcentral region. It seeks to determine whether opinion leaders still exist in the picture and if they still exert considerable influence, especially in matters of political conversations and decision-making among the citizens of this area. It further explores whether the diffusion of social media is a reality and how the ‘low-end’ media users react to the new-found freedom of access to media, and how they are using it to inform their decisions on important matters as well as examines if they are still glued to their opinion leaders. This study explores the empirical dimensions of the two-step flow hypothesis in relation to the activities of social media to determine if a change has occurred and in what direction, using mixed methos of Survey and in-depth interviews. Our understanding and belief in some theoretical assumptions may be enhanced or challenged by the study outcome.Keywords: Opinion Leadership, Active Media User, Two-Step-Flow, Social media, Northcentral Nigeria
Procedia PDF Downloads 753429 Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials
Authors: Yusuf Emirov, Abdullatif Hakami, Prasanta K Biswas, Elias K Stefanakos, Sesha S Srinivasan
Abstract:
This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles.Keywords: core-shell thermochromic materials, core-shell microstructure formation, thermal and color chromic behavior of core-shell microcapsules, development micro-capsulated thermochromic materials
Procedia PDF Downloads 1623428 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk
Authors: Alazar Nebyou, Sujata Pandit
Abstract:
Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity
Procedia PDF Downloads 2173427 Nanotechnology-Based Treatment of Klebsiella pneumoniae Infections
Authors: Lucian Mocan, Teodora Mocan, Matea Cristian, Cornel Iancu
Abstract:
We present method of nanoparticle enhanced laser thermal ablation of Klebsiella pneumoniae infections, using gold nanoparticles combined with a specific growth factor and demonstrate its selective therapeutic efficacy. Ab (antibody solution) bound to GNPs (gold nanoparticles) was administered in vitro and determined the specific delivery of the nano-bioconjugate into the microorganism. The extent of necrosis was considerable following laser therapy, and at the same time, normal cells were not seriously affected. The selective photothermal ablation of the infected tissue was obtained after the selective accumulation of Ab bound to GNPs into bacteria following perfusion. These results may represent a major step in antibiotherapy treatment using nanolocalized thermal ablation by laser heating.Keywords: gold nanoparticles, Klebsiella pneumoniae, nanoparticle functionalization, laser irradiation, antibody
Procedia PDF Downloads 4263426 Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath
Authors: N. Malatji, A. P. I. Popoola
Abstract:
Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required.Keywords: electrodeposition, nanocomposite coatings, corrosion, thermal stability, tribology
Procedia PDF Downloads 3943425 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Authors: Varun Goel
Abstract:
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs
Procedia PDF Downloads 4563424 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B
Authors: Ceren Karaman, Onur Karaman
Abstract:
The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification
Procedia PDF Downloads 2503423 Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method
Authors: Hamidreza Mansouri
Abstract:
In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant.Keywords: GTAW welding, stress corrosion cracking(SCC), thermal method, ultrasonic peening.
Procedia PDF Downloads 523422 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems
Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan
Abstract:
Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling
Procedia PDF Downloads 893421 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India
Authors: Sayantan Khanra, Rojers P. Joseph
Abstract:
Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions
Procedia PDF Downloads 2693420 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment
Authors: Guarry Montrose, Ted Soubdhan
Abstract:
In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.Keywords: plant fibers, tropical climates, sustainable development, waste reduction
Procedia PDF Downloads 1843419 Performance of an Absorption Refrigerator Using a Solar Thermal Collector
Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim
Abstract:
In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.Keywords: absorption, ammonia, cold room, solar collector, vacuum tube
Procedia PDF Downloads 1803418 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum
Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau
Abstract:
Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).Keywords: thermography, orofacial biomechanics, skin temperature, ice therapy
Procedia PDF Downloads 2593417 A Comparative Study on the Thermophysical and Lubricity Characteristics of Multiwall Carbon Nanotube/Oil and Nanoclay/Oil Nanofluids
Authors: H. Singh, H. Bhowmick
Abstract:
Now-a-days, particle based lubricants have been widely used to enhance the lubrication performance. Use of tailor made micro/nanofluids can reduce the friction losses and dissipate heat in a better way. Use of Carbon Nanotubes (CNTs) has gained interests because of its structure that can endure much better in a system mechanically or thermally in comparison to any other additive in oil. On the other hand, nanoclays have been characterized mechanically and tribologically for the use of clay/polymer composite, and they have been gaining huge interest. Hence it is interesting to be investigated the effect of nanoclays as additive in oil. Thermophysical characteristics of lubricant play a predominant role in defining the friction and wear characteristics of lubricated contacts. However, very limited studies have been carried out to correlate the thermophysical properties of nanolubricants with their lubricity characteristics. Besides, most of the lubricant formulations till dates are found to be optimized for steel/steel contacts. In the present study, Multiwall Carbon Nanotube (MWCNT) and nanoclay are used as particle additives in mineral oil to develop nanofluids of various concentrations. The prepared lubricants are tested for their rheological, thermal and lubricity characteristics under aluminium-steel contacts. From the thermophysical investigation, it is observed that nanoclay particles significantly improve the viscosity of lubricant with an insignificant improvement in thermal conductivity. On the other hand, MWCNT particles moderately increase the viscosity but significantly increase the thermal conductivity of the base oil. Frictional responses of the nanofluids are characterized using a Pin-on-Disc tribometer which reveal some interesting facts. The findings from this study will greatly aid in formulating the particle based lubricants for cutting fluid in metal forming industries as well as fully developed nanolubricants for aluminium and Aluminium Metal Matrix Composite (AMMC) tribocontact for the use in the automotive and their allied industries.Keywords: MWCNT, Multiwall Carbon Nanotube, nanoclay, nanolubricant, rheology, thermal conductivity
Procedia PDF Downloads 1413416 Solving the Overheating on the Top Floor of Energy Efficient Houses: The Envelope Improvement
Authors: Sormeh Sharifi, Wasim Saman, Alemu Alemu, David Whaley
Abstract:
Although various energy rating schemes and compulsory building codes are using around the world, there are increasing reports on overheating in energy efficient dwellings. Given that the cooling demand of buildings is rising globally because of the climate change, it is more likely that the overheating issue will be observed more. This paper studied the summer indoor temperature in eight air-conditioned multi-level houses in Adelaide which have complied with the Australian Nationwide Houses Energy Rating Scheme (NatHERS) minimum energy performance of 7.5 stars. Through monitored temperature, this study explores that overheating is experienced on 75.5% of top floors during cooling periods while the air-conditioners were running. This paper found that the energy efficiency regulations have significantly improved thermal comfort in low floors, but not on top floors, and the energy-efficient house is not necessarily adapted with the air temperature fluctuations particularly on top floors. Based on the results, this study suggests that the envelope of top floors for multi-level houses in South Australian context need new criteria to make the top floor more heat resistance in order to: preventing the overheating, reducing the summer pick electricity demand and providing thermal comfort. Some methods are used to improve the envelope of the eight case studies. The results demonstrate that improving roofs was the most effective part of the top floors envelope in terms of reducing the overheating.Keywords: building code, climate change, energy-efficient building, energy rating, overheating, thermal comfort
Procedia PDF Downloads 2223415 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation
Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen
Abstract:
In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.Keywords: air tunnel, ground heat exchanger, raft foundation, residential building
Procedia PDF Downloads 332