Search results for: string stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3531

Search results for: string stability

2331 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles

Authors: Yuvraj S. Malghe, Atul B. Lavand

Abstract:

In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.

Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide

Procedia PDF Downloads 284
2330 Mg Doped CuCrO₂ Thin Oxides Films for Thermoelectric Properties

Authors: I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé

Abstract:

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat to electricity without using moving parts. In fact, the thermoelectric (TE) effect defines as the conversion of a temperature gradient directly into electricity and vice versa. To optimize TE materials, the power factor (PF = σS² where σ is electrical conductivity and S is Seebeck coefficient) must be increased by adjusting the carrier concentration, and/or the lattice thermal conductivity Kₜₕ must be reduced by introducing scattering centers with point defects, interfaces, and nanostructuration. The PF does not show the advantages of the thin film because it does not take into account the thermal conductivity. In general, the thermal conductivity of the thin film is lower than the bulk material due to their microstructure and increasing scattering effects with decreasing thickness. Delafossite type oxides CuᴵMᴵᴵᴵO₂ received main attention for their optoelectronic properties as a p-type semiconductor they exhibit also interesting thermoelectric (TE) properties due to their high electrical conductivity and their stability in room atmosphere. As there are few proper studies on the TE properties of Mg-doped CuCrO₂ thin films, we have investigated, the influence of the annealing temperature on the electrical conductivity and the Seebeck coefficient of Mg-doped CuCrO₂ thin films and calculated the PF in the temperature range from 40 °C to 220 °C. For it, we have deposited Mg-doped CuCrO₂ thin films on fused silica substrates by RF magnetron sputtering. This study was carried out on 300 nm thin films. The as-deposited Mg doped CuCrO₂ thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum. Electrical conductivity and Seebeck coefficient of the thin films have been measured from 40 to 220 °C. The highest electrical conductivity of 0.60 S.cm⁻¹ with a Seebeck coefficient of +329 µV.K⁻¹ at 40 °C have been obtained for the sample annealed at 550 °C. The calculated power factor of optimized CuCrO₂:Mg thin film was 6 µW.m⁻¹K⁻² at 40 °C. Due to the constant Seebeck coefficient and the increasing electrical conductivity with temperature it reached 38 µW.m⁻¹K⁻² at 220 °C that was a quite good result for an oxide thin film. Moreover, the degenerate behavior and the hopping mechanism of CuCrO₂:Mg thin film were elucidated. Their high and constant Seebeck coefficient in temperature and their stability in room atmosphere could be a great advantage for an application of this material in a high accuracy temperature measurement devices.

Keywords: thermoelectric, oxides, delafossite, thin film, power factor, degenerated semiconductor, hopping mode

Procedia PDF Downloads 199
2329 Older Adults' Perception of Successful Aging among Unrest Situation: A Case of the Three Southernmost Provinces of Thailand

Authors: Medina Adulyarat

Abstract:

Like many other countries, Thailand is experiencing an increase in its proportion of older adults. However, the political, social, and religious climates of the various regions of Thailand are very diverse and the life experiences of older Thai citizens can vary greatly by region. For more than a decade, the southernmost provinces, namely Yala, Pattani and Narathiwat, have experienced social and political unrest, often characterized by violence in the form of bombings and shootings, which has impacted the older adults residing in these regions. While, Muslims are considered a minority in Thailand, the majority of individuals in southernmost regions are Muslims, causing these regions to be different in terms of culture and beliefs. Using a phenomenological approach, this study examines older adults’ perceptions of successful aging within the context of violent social and political unrest. This research aims to 1) understand how older adults living in these areas perceive successful aging in relation to Rowe and Kahn’s successful ageing model, and 2) describe the experiences of older adults living in areas of violent social and political unrest. Data were collected using in-depth interviews with eight older adults living in the unrest area, composing of four males and four females aged between 55-75. Content analysis was used to investigate older adults’ perception of successful aging. Older adults living their life amidst the violence did not view the situation as a threat to their life for they viewed that they are not the targets of the unrest situation. Additionally, participants identified their religious beliefs and a strong sense of community belonging as coping strategies employed to deal with social and political unrest. Thus, according to them, the violence did not affect their perception of successful aging. While the participants’ perceptions of successful aging were generally consistent with aspects identified in the successful aging model proposed by Rowe and Kahn, a theme of “financial stability” emerged. The results can be divided into four interrelated themes, which are; 1) engaging with others; 2) religiosity; 3) financial stability; and 4) health. Understanding the older persons’ view of successful aging in vulnerable situations should add more depth and enhance the conceptualization of the successful aging concept.

Keywords: cultural gerontology, minority population, successful aging, unrest situation

Procedia PDF Downloads 327
2328 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 212
2327 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 229
2326 Synthesis of Bimetallic Ti-Fe-SBA-15 Using Silatrane

Authors: Ratchadaporn Kaewmuang, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

Mesoporous materials have been used in many applications, such as adsorbent and catalyst. SBA-15, a 2D hexagonal ordered mesoporous silica material, has not only high specific surface area, but also thicker wall, larger pore size, better hydrothermal stability, and mechanical properties than M41s. However, pure SBA-15 still lacks of redox properties. Therefore, bimetallic incorporation into framework is of interest since it can create new active sites. In this work, Ti-Fe-SBA-15 is studied and successfully synthesized via sol-gel process, using silatrane, FeCl3, and titanium (VI) isopropoxide as silica, iron, and titanium sources, respectively. The products are characterized by SAXD, FE-SEM, and N2 adsorption/desorption, DR-UV, and XRF.

Keywords: SBA-15, mesoporous silica, bimetallic, titanium, iron, silatrane

Procedia PDF Downloads 380
2325 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 301
2324 Comparison of Computerized Dynamic Posturography and Functional Head Impulse Test Scores after of Hatha Yoga Practice and Resistance-Based Aerobic Exercise in Adult Female Yoga Practitioners

Authors: Çağla Aras, Kübra Bi̇nay, Aysberg Şamil önlü, Mine Baydan Aran, Dicle Aras

Abstract:

The purpose of the present research was to investigate the acute effects of 30-min hatha yoga and 30-min resistance-based aerobic exercise (RBAE) on computerized dynamic posturography (CDP) and functional head impulse test (fHIT) scores in adult female yoga practitioners. To reach this aim, ten participants executed CDP and fHIT three times in total: at rest, after yoga, and after RBAE. The yoga practice lasted a total of 30 minutes, including 25 min of asanas and 5 minutes of savasana. RBAE lasted a total of 30 minutes with an intensity of 70-75% of the heart rate reserve method. When the results were examined, no change was observed in any parameters of the fHIT scores due to resting or exercise implementation. On the contrary, some changes were observed in CDP test results depending on the type of exercise. The post-RBAE somatosensory and visual systems values were higher than resting (p<0.05). The composite balance score derived after RBAE was found to be improved when compared to post-yoga and resting values (p<0.01). Lastly, the post-RBAE vestibular system score was found to be statistically significantly higher than the post-Yoga values. In addition, it was observed that body composition parameters, especially decreasing BW, LBM, PBF, MBF and TBW, were associated with improved postural stability values. According to the results, it can be stated that neither hatha yoga nor resistance-based aerobic exercise has an acute effect on functional vestibulo-ocular reflex. In addition, although there was no change in balance level after yoga, it was observed that RBAE performed at 70-75% of the heart rate reserve and for 30 minutes had positive acute effects on postural stability and balance.

Keywords: hatha yoga, resistance training, aerobic training, high intensity training, computerized dynamic posturography, functional head impulse test

Procedia PDF Downloads 56
2323 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djemeleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: rollover, single unit heavy vehicle, neural networks, nonlinear side force

Procedia PDF Downloads 477
2322 Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: lasers, luminescence, upconversion photonics, rare earth metals

Procedia PDF Downloads 85
2321 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 57
2320 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis

Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.

Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning

Procedia PDF Downloads 12
2319 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage

Authors: Youcef Amir

Abstract:

The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.

Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period

Procedia PDF Downloads 229
2318 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 66
2317 Mechanisms of Cultural Change Resistance through Cultures

Authors: Horaya Mostafa Ahmed

Abstract:

All cultures are inherently predisposed to change and, at the same time, to resisting change. There are dynamic processes operating that encourage the acceptance of new ideas and things, while there are others that encourage changeless stability. Despite the dramatic changes that have taken place in all human cultures, there are cultures still steadfast and resist change. These cultures resist through some culture mechanisms like, cultural boundaries, ethnocentrism, religion, and cultural relativity. So this paper is an attempt to discover these mechanisms of cultural change resistance and to ask is cultural change always required.

Keywords: cultural change, cultural boundaries, cultural relativity, ethnocentrism, religion, resistance

Procedia PDF Downloads 342
2316 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 355
2315 Structural Analysis and Modelling in an Evolving Iron Ore Operation

Authors: Sameh Shahin, Nannang Arrys

Abstract:

Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.

Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation

Procedia PDF Downloads 49
2314 Effects of Macroprudential Policies on BankLending and Risks

Authors: Stefanie Behncke

Abstract:

This paper analyses the effects of different macroprudential policy measures that have recently been implemented in Switzerland. Among them is the activation and the increase of the countercyclical capital buffer (CCB) and a tightening of loan-to-value (LTV) requirements. These measures were introduced to limit systemic risks in the Swiss mortgage and real estate markets. They were meant to affect mortgage growth, mortgage risks, and banks’ capital buffers. Evaluation of their quantitative effects provides insights for Swiss policymakers when reassessing their policy. It is also informative for policymakers in other countries who plan to introduce macroprudential instruments. We estimate the effects of the different macroprudential measures with a Differences-in-Differences estimator. Banks differ with respect to the relative importance of mortgages in their portfolio, their riskiness, and their capital buffers. Thus, some of the banks were more affected than others by the CCB, while others were more affected by the LTV requirements. Our analysis is made possible by an unusually informative bank panel data set. It combines data on newly issued mortgage loans and quantitative risk indicators such as LTV and loan-to-income (LTI) ratios with supervisory information on banks’ capital and liquidity situation and balance sheets. Our results suggest that the LTV cap of 90% was most effective. The proportion of new mortgages with a high LTV ratio was significantly reduced. This result does not only apply to the 90% LTV, but also to other threshold values (e.g. 80%, 75%) suggesting that the entire upper part of the LTV distribution was affected. Other outcomes such as the LTI distribution, the growth rates of mortgages and other credits, however, were not significantly affected. Regarding the activation and the increase of the CCB, we do not find any significant effects: neither LTV/LTI risk parameters nor mortgage and other credit growth rates were significantly reduced. This result may reflect that the size of the CCB (1% of relevant residential real estate risk-weighted assets at activation, respectively 2% at the increase) was not sufficiently high enough to trigger a distinct reaction between the banks most likely to be affected by the CCB and those serving as controls. Still, it might be have been effective in increasing the resilience in the overall banking system. From a policy perspective, these results suggest that targeted macroprudential policy measures can contribute to financial stability. In line with findings by others, caps on LTV reduced risk taking in Switzerland. To fully assess the effectiveness of the CCB, further experience is needed.

Keywords: banks, financial stability, macroprudential policy, mortgages

Procedia PDF Downloads 362
2313 Islamic Finance and Trade Promotion in the African Continental Free Trade Area: An Exploratory Study

Authors: Shehu Usman Rano Aliyu

Abstract:

Despite the significance of finance as a major trade lubricant, evidence in the literature alludes to its scarcity and increasing cost, especially in developing countries where small and medium-scale enterprises are worst affected. The creation of the African Continental Free Trade Area (AFCFTA) in 2018, an organ of the African Union (AU), was meant to serve as a beacon for deepening economic integration through the removal of trade barriers inhibiting intra-African trade and movement of persons, among others. Hence, this research explores the role Islamic trade finance (ITF) could play in spurring intra- and inter-African trade. The study involves six countries; Egypt, Kenya, Malaysia, Morocco, Nigeria, and Saudi Arabia, and employs survey research, a total of 430 sample data, and SmartPLS Structural Equation Modelling (SEM) techniques in its analyses. We find strong evidence that Shari’ah, legal and regulatory compliance issues of the ITF institutions rhythm with the internal, national, and international compliance requirements equally as the unique instruments applied in ITF. In addition, ITF was found to be largely driven by global economic and political stability, socially responsible finance, ethical and moral considerations, risk-sharing, and resilience of the global Islamic finance industry. Further, SMEs, Governments, and Importers are the major beneficiary sectors. By and large, AfCFTA’s protocols align with the principles of ITF and are therefore suited for the proliferation of Islamic finance in the continent. And, while AML/KYC and BASEL requirements, compliance to AAOIFI and IFSB standards, paucity of Shari'ah experts, threats to global security, and increasing global economic uncertainty pose as major impediments, the future of ITF would be shaped by a greater need for institutional and policy support, global economic cum political stability, robust regulatory framework, and digital technology/fintech. The study calls for the licensing of more ITF institutions in the continent, participation of multilateral institutions in ITF, and harmonization of Shariah standards.

Keywords: AfCFTA, islamic trade finance, murabaha, letter of credit, forwarding

Procedia PDF Downloads 57
2312 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry

Authors: John M. Ikome

Abstract:

In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.

Keywords: scheduling, heuristics, branch, integrated

Procedia PDF Downloads 408
2311 Surface Display of Lipase on Yarrowia lipolytica Cells

Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova

Abstract:

Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.

Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst

Procedia PDF Downloads 483
2310 Finding the Right Regulatory Path for Islamic Banking

Authors: Meysam Saidi

Abstract:

While the specific externalities and required regulatory measures in relation to Islamic banking are fairly uncertain, the business is growing across the world. Unofficial data indicate that the Islamic Finance market is growing with annual rate of 15% and it has reached 1.3 $ trillion size. This trend is associated with inherent systematic connection of Islamic financial institutions to other entities and different sectors of economies. Islamic banking has been subject of market development policies in major economies, most notably the UK. This trend highlights the need for identification of distinct risk features of Islamic banking and crafting customized regulatory measures. So far there has not been a significant systemic crisis in this market which can be attributed to its distinct nature. However, the significant growth and spread of its products worldwide necessitate an in depth study of its nature for customized congruent regulatory measures. In the post financial crisis era some market analysis and reports suggested that the Islamic banks fairly weathered the crisis. As far as heavily blamed conventional financial products such as subprime mortgage backed securities and speculative credit default swaps were concerned the immunity claim can be considered true, as Islamic financial institutions were not directly exposed to such products. Nevertheless, similar to the experience of the conventional banking industry, it can be only a matter of time for Islamic banks to face failures that can be specific to the nature of their business. Using the experience of conventional banking regulations and identifying those peculiarities of Islamic banking that need customized regulatory approach can aid to prevent major failures. Frank Knight has stated that “We perceive the world before we react to it, and we react not to what we perceive, but always to what we infer”. The debate over congruent Islamic banking regulations might not be an exception to Frank Knight’s statement but I will try to base my discussion on concrete evidences. This paper first analyzes both theoretical and actual features of Islamic banking in order to ascertain to its peculiarities in terms of market stability and other externalities. Next, the paper discusses distinct features of Islamic financial transactions and banking which might require customized regulatory measures. Finally, the paper explores how a more transparent path for the Islamic banking regulations can be drawn.

Keywords: Islamic banking, regulation, risks, capital requirements, customer protection, financial stability

Procedia PDF Downloads 410
2309 Soret-Driven Convection in a Binary Fluid with Coriolis Force

Authors: N. H. Z. Abidin, N. F. M. Mokhtar, S. S. A. Gani

Abstract:

The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system.

Keywords: Benard convection, binary fluid, Coriolis, Soret

Procedia PDF Downloads 386
2308 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors

Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri

Abstract:

Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.

Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis

Procedia PDF Downloads 547
2307 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC

Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad

Abstract:

In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.

Keywords: MAX phase, microstructures, composites, hardness, SEM

Procedia PDF Downloads 347
2306 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel

Procedia PDF Downloads 254
2305 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 268
2304 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)

Authors: C. Amrane, D. Haman

Abstract:

Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.

Keywords: Al-Mg alloys, precipitation, hardness, heat treatments

Procedia PDF Downloads 388
2303 Human Trafficking and Terrorism: A Study on the Security Challenges Imposed upon Countries in Conflict

Authors: Christopher Holroyd

Abstract:

With the various terrorist organizations and drug cartels that are currently active, there is a myriad of security concerns facing countries around the world. Organizations that focus their attacks on others through terror, such as what is seen with the Islamic State of Iraq and the Levant (ISIS), have no boundaries when it comes to doing what is needed to fulfill their desired intent. For countries such as Iraq, who have been trying to rebuild their country since the fall of the Saddam Hussein Regime, organizations such as Al-Qaeda and ISIS have been impeding the country’s efforts toward peace and stability. One method utilized by terrorist organizations around the world is human trafficking. This method is one that is seen around the world; modern slavery is still exploited by those who have no concern for human decency and morality, their only concern is to achieve their goals by any means. It is understandable that some people may not have even heard of 'modern slavery', or they just might not believe that it is even an issue in today’s world. Organizations such as ISIS are not the only ones in the world that seek to benefit from the immoral trading of humans. Various drug cartels in the world, such as those seen in Mexico and Central America, have recently begun to take part in the trade – moving humans from state to state, or country to country, to better fuel their overall operations. This now makes the possibility of human trafficking more real for those in the United States because of the proximity of the cartels to the southern border of the country. An issue that, at one time, might have only seen as a distant threat, is now close to home for those in the United States. Looking at these two examples is how we begin to understand why human trafficking is utilized by various organizations around the world. This trade of human beings and the violation of basic human rights is a plague that effects the entire world and not just those that are in a country other than your own. One of the security issues that stem from the trade includes the movement and recruitment of members of the organizations. With individuals being smuggled from one location to another in secrecy, this only puts those trying to combat this trade at a disadvantage. This creates concern over the accurate number of potential recruits, combatants, and other individuals who are working against the host nation, and for the mission of the cartel or terrorist organization they are a part of. An uphill battle is created, and the goals of peace and stability are now harder to reach. Aside from security aspects, it cannot be forgotten that those being traded and forced into slavery, are being done so against their will. Families are separated, children trained to be fighters or worse. This makes the goal of eradicating human trafficking even more dire and important.

Keywords: human trafficking, reconstruction, security, terrorism

Procedia PDF Downloads 134
2302 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: Ogunrinde Roseline Bosede

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: differential equations, numerical, polynomial, initial value problem, differential equation

Procedia PDF Downloads 449