Search results for: robust M-estimator
275 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 149274 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework
Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari
Abstract:
The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency
Procedia PDF Downloads 61273 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 63272 Transition from Linear to Circular Business Models with Service Design Methodology
Authors: Minna-Maari Harmaala, Hanna Harilainen
Abstract:
Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.Keywords: business model innovation, circular economy, circular economy business models, service design
Procedia PDF Downloads 136271 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process
Authors: Johannes Gantner, Michael Held, Matthias Fischer
Abstract:
The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation
Procedia PDF Downloads 286270 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 125269 Exploring Legal Liabilities of Mining Companies for Human Rights Abuses: Case Study of Mongolian Mine
Authors: Azzaya Enkhjargal
Abstract:
Context: The mining industry has a long history of human rights abuses, including forced labor, environmental pollution, and displacement of communities. In recent years, there has been growing international pressure to hold mining companies accountable for these abuses. Research Aim: This study explores the legal liabilities of mining companies for human rights abuses. The study specifically examines the case of Erdenet Mining Corporation (EMC), a large mining company in Mongolia that has been accused of human rights abuses. Methodology: The study used a mixed-methods approach, which included a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Findings: The study found that mining companies can be held liable for human rights abuses under a variety of regulatory frameworks, including soft law and self-regulatory instruments in the mining industry, international law, national law, and corporate law. The study also found that there are a number of challenges to holding mining companies accountable for human rights abuses, including the lack of effective enforcement mechanisms and the difficulty of proving causation. Theoretical Importance: The study contributes to the growing body of literature on the legal liabilities of mining companies for human rights abuses. The study also provides insights into the challenges of holding mining companies accountable for human rights abuses. Data Collection: The data for the study was collected through a variety of methods, including a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Analysis Procedures: The data was analyzed using a variety of methods, including content analysis, thematic analysis, and case study analysis. Conclusion: The study concludes that mining companies can be held liable for human rights abuses under a variety of legal and regulatory frameworks. There are positive developments in ensuring greater accountability and protection of affected communities and the environment in countries with a strong economy. Regrettably, access to avenues of redress is reasonably low in less developed countries, where the governments have not implemented a robust mechanism to enforce liability requirements in the mining industry. The study recommends that governments and mining companies take more ambitious steps to enhance corporate accountability.Keywords: human rights, human rights abuses, ESG, litigation, Erdenet Mining Corporation, corporate social responsibility, soft law, self-regulation, mining industry, parent company liability, sustainability, environment, UN
Procedia PDF Downloads 81268 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust
Procedia PDF Downloads 131267 An Examination of Earnings Management by Publicly Listed Targets Ahead of Mergers and Acquisitions
Authors: T. Elrazaz
Abstract:
This paper examines accrual and real earnings management by publicly listed targets around mergers and acquisitions. Prior literature shows that earnings management around mergers and acquisitions can have a significant economic impact because of the associated wealth transfers among stakeholders. More importantly, acting on behalf of their shareholders or pursuing their self-interests, managers of both targets and acquirers may be equally motivated to manipulate earnings prior to an acquisition to generate higher gains for their shareholders or themselves. Building on the grounds of information asymmetry, agency conflicts, stewardship theory, and the revelation principle, this study addresses the question of whether takeover targets employ accrual and real earnings management in the periods prior to the announcement of Mergers and Acquisitions (M&A). Additionally, this study examines whether acquirers are able to detect targets’ earnings management, and in response, adjust the acquisition premium paid in order not to face the risk of overpayment. This study uses an aggregate accruals approach in estimating accrual earnings management as proxied by estimated abnormal accruals. Additionally, real earnings management is proxied for by employing widely used models in accounting and finance literature. The results of this study indicate that takeover targets manipulate their earnings using accruals in the second year with an earnings release prior to the announcement of the M&A. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals. These results are consistent with the argument that targets of cash-only or mixed-payment deals do not have the same strong motivations to manage their earnings as their stock-financed deals counterparts do additionally supporting the findings of prior studies that the method of payment in takeovers is value relevant. The findings of this study also indicate that takeover targets manipulate earnings upwards through cutting discretionary expenses the year prior to the acquisition while they do not do so by manipulating sales or production costs. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals, providing further robustness to the results derived under the accrual-based models. Finally, this study finds evidence suggesting that acquirers are fully aware of the accrual-based techniques employed by takeover targets and can unveil such manipulation practices. These results are robust to alternative accrual and real earnings management proxies, as well as controlling for the method of payment in the deal.Keywords: accrual earnings management, acquisition premium, real earnings management, takeover targets
Procedia PDF Downloads 117266 Examination of the South African Fire Legislative Framework
Authors: Mokgadi Julia Ngoepe-Ntsoane
Abstract:
The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.Keywords: sustainable job creation, growth and development, transformation, risk management
Procedia PDF Downloads 175265 Multidisciplinarity, Interdisciplinarity and Transdisciplinarity in Peace Education and Peace Studies: A Content Analysis
Authors: Frances Bernard Kominkiewicz
Abstract:
Demonstrating the ability to build social justice and peace is integral in undergraduate and graduate education. Many disciplines are involved in peace education and peace studies, and the collaboration of those disciplines are examined in this paper. To the author’s best knowledge, no content analysis research previously existed regarding peace studies and peace education from a multidisciplinarity, interdisciplinarity, and transdisciplinarity perspective. Peacebuilding is taught through these approaches, which adds to the depth, breadth, and richness of peace education and peace studies. This paper presents a content analysis of academic peace studies programs and course descriptions. Variables studied include contributions and foci of disciplines in peace studies programs and students’ engagement in community peacebuilding. The social work discipline, for example, focuses on social and economic justice as one of the nine competencies that undergraduate and graduate students must attain before earning a Bachelor of Social Work degree or a Master of Social Work degree and becoming social work practitioners. Demonstrating the ability to build social justice and peace is integral in social work education. Peacebuilding is taught through such social work courses as conflict resolution, and social work practice with communities and organizations, and these courses are examined in this research through multidisciplinarity, interdisciplinarity, and transdisciplinarity approach. Peace and social justice are linked terms in various fields, including social work. Social justice is of paramount importance in social work programs, and social workers are trained to advocate for human rights and social, economic, and environmental justice. Social workers use knowledge of oppression, globally as well as nationally, in the practice of peace education and peace studies. Social work is at the forefront in advocating for social justice as a discipline and joins with other educators in strengthening the peacebuilding opportunities for students. The content analysis, conducted through a random sample of peace studies and peace education university and college programs in the United States, found that although courses teach the concepts of peace education and peace studies, courses often are not given these titles in the social work discipline. Therefore, this analysis also includes a discussion of the multidisciplinarity, interdisciplinarity, and transdisciplinarity approach to peace education, peace studies, and peacebuilding and the importance of these approaches in educating students about peace. The content analysis further found great variability in the number of disciplines involved in peace studies programs, the focus of those disciplines in peace education, the placement of peace studies and peace education within the university or college, and the number of courses and concentrations available in peace studies and peace education. In conclusion, the research points toward very robust and diverse approaches to peace education with opportunities for further research and discussion.Keywords: content analysis, interdisciplinarity, multidisciplinarity, peace education programs
Procedia PDF Downloads 155264 Tasting Terroir: A Gourmet Adventure in Food and Wine Tourism
Authors: Sunita Boro, Saurabh Kumar Dixit
Abstract:
Terroir, an intricate fusion of geography, climate, soil, and human expertise, has long been acknowledged as a defining factor in the character of wines and foods. This research embarks on an exploration of terroir's profound influence on gastronomic tourism, shedding light on the intricate interplay between the physical environment and culinary artistry. Delving into the intricate science of terroir, we scrutinize its role in shaping the sensory profiles of wines and foods, emphasizing the profound impact of specific regions on flavor, aroma, and texture. We deploy a multifaceted methodology, amalgamating sensory analysis, chemical profiling, geographical information systems, and qualitative interviews to unearth the nuanced nuances of terroir expression. Through an exhaustive review of the literature, we elucidate the historical roots of terroir, unveil the intricate cultural dimensions shaping it, and provide a comprehensive examination of prior studies in the field. Our findings underscore the pivotal role of terroir in promoting regional identities, enhancing the economic viability of locales, and attracting gastronomic tourists. The paper also dissects the marketing strategies employed to promote terroir-driven food and wine experiences. We elucidate the utilization of storytelling, branding, and collaborative endeavors in fostering a robust terroir-based tourism industry. This elucidates both the potential for innovation and the challenges posed by oversimplification or misrepresentation of terroir. Our research spotlights the intersection of terroir and sustainability, emphasizing the significance of environmentally conscious practices in terroir-driven productions. We discern the harmonious relationship between sustainable agriculture, terroir preservation, and responsible tourism, encapsulating the essence of ecological integrity in gastronomic tourism. Incorporating compelling case studies of regions and businesses excelling in the terroir-based tourism realm, we offer in-depth insights into successful models and strategies, with an emphasis on their replicability and adaptability to various contexts. Ultimately, this paper not only contributes to the scholarly understanding of terroir's role in the world of food and wine tourism but also provides actionable recommendations for stakeholders to leverage terroir's allure, preserve its authenticity, and foster sustainable and enriching culinary tourism experiences.Keywords: terroir, food tourism, wine tourism, sustainability
Procedia PDF Downloads 62263 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean
Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama
Abstract:
Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.Keywords: coral environment, marine microbiology, network analysis, omics data analysis
Procedia PDF Downloads 254262 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation
Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau
Abstract:
In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa
Procedia PDF Downloads 158261 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 53260 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 25259 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces
Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani
Abstract:
A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.Keywords: readiness, maturity, system, integration
Procedia PDF Downloads 98258 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber
Procedia PDF Downloads 266257 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics
Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty
Abstract:
Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC
Procedia PDF Downloads 223256 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture
Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran
Abstract:
The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development
Procedia PDF Downloads 153255 The Production of Reinforced Insulation Bricks out of the Concentration of Ganoderma lucidum Fungal Inoculums and Cement Paste
Authors: Jovie Esquivias Nicolas, Ron Aldrin Lontoc Austria, Crisabelle Belleza Bautista, Mariane Chiho Espinosa Bundalian, Owwen Kervy Del Rosario Castillo, Mary Angelyn Mercado Dela Cruz, Heinrich Theraja Recana De Luna, Chriscell Gipanao Eustaquio, Desiree Laine Lauz Gilbas, Jordan Ignacio Legaspi, Larah Denise David Madrid, Charles Linelle Malapote Mendoza, Hazel Maxine Manalad Reyes, Carl Justine Nabora Saberdo, Claire Mae Rendon Santos
Abstract:
In response to the global race in discovering the next advanced sustainable material that will reduce our ecological footprint, the researchers aimed to create a masonry unit which is competent in physical edifices and other constructional facets. From different proven researches, mycelium has been concluded that when dried can be used as a robust and waterproof building material that can be grown into explicit forms, thus reducing the processing requirements. Hypothesizing inclusive measures to attest fungi’s impressive structural qualities and absorbency, the researchers projected to perform comparative analyses in creating mycelium bricks from mushroom spores of G. lucidum. Three treatments were intended to classify the most ideal concentration of clay and substrate fixings. The substrate bags fixed with 30% clay and 70% mixings indicated highest numerical frequencies in terms of full occupation of fungal mycelia. Subsequently, sorted parts of white portions from the treatment were settled in a thermoplastic mold and burnt. Three proportional concentrations of cultivated substrate and cement were also prioritized to gather results of variation focused on the weights of the bricks in the Water Absorption Test and Durability Test. Fungal inoculums with solutions of cement showed small to moderate amounts of decrease and increase in load. This proves that the treatments did not show any significant difference when it comes to strength, efficiency and absorption capacity. Each of the concentration is equally valid and could be used in supporting the worldwide demands of creating numerous bricks while also taking into consideration the recovery of our nature.Keywords: mycelium, fungi, fungal mycelia, durability test, water absorption test
Procedia PDF Downloads 136254 Modified Fuzzy Delphi Method to Incorporate Healthcare Stakeholders’ Perspectives in Selecting Quality Improvement Projects’ Criteria
Authors: Alia Aldarmaki, Ahmad Elshennawy
Abstract:
There is a global shift in healthcare systems’ emphasizing engaging different stakeholders in selecting quality improvement initiatives and incorporating their preferences to improve the healthcare efficiency and outcomes. Although experts bring scientific knowledge based on the scientific model and their personal experience, other stakeholders can bring new insights and information into the decision-making process. This study attempts to explore the impact of incorporating different stakeholders’ preference in identifying the most significant criteria that should be considered in healthcare for electing the improvement projects. A Framework based on a modified Fuzzy Delphi Method (FDM) was built. In addition to, the subject matter experts, doctors/physicians, nurses, administrators, and managers groups contribute to the selection process. The research identifies potential criteria for evaluating projects in healthcare, then utilizes FDM to capture expertise knowledge. The first round in FDM is intended to validate the identified list of criteria from experts; which includes collecting additional criteria from experts that the literature might have overlooked. When an acceptable level of consensus has been reached, a second round is conducted to obtain experts’ and other related stakeholders’ opinions on the appropriate weight of each criterion’s importance using linguistic variables. FDM analyses eliminate or retain the criteria to produce a final list of the critical criteria to select improvement projects in healthcare. Finally, reliability and validity were investigated using Cronbach’s alpha and factor analysis, respectively. Two case studies were carried out in a public hospital in the United Arab Emirates to test the framework. Both cases demonstrate that even though there were common criteria between the experts and the stakeholders, still stakeholders’ perceptions bring additional critical criteria into the evaluation process, which can impact the outcomes. Experts selected criteria related to strategical and managerial aspects, while the other participants preferred criteria related to social aspects such as health and safety and patients’ satisfaction. The health and safety criterion had the highest important weight in both cases. The analysis showed that Cronbach’s alpha value is 0.977 and all criteria have factor loading greater than 0.3. In conclusion, the inclusion of stakeholders’ perspectives is intended to enhance stakeholders’ engagement, improve transparency throughout the decision process, and take robust decisions.Keywords: Fuzzy Delphi Method, fuzzy number, healthcare, stakeholders
Procedia PDF Downloads 129253 The Role of Technology in Managing Election Logistics and Preventing Fraud in Nigeria and Uganda: A Comparative Analysis
Authors: Sifiso Vilakazi, Lerato Mzenzi
Abstract:
The incorporation of technology has brought about a considerable evolution in election management, providing answers to persistent issues with fraud, inefficiency, and logistical complexity. The paper offers a comparative review of the effects of technology advancements on election logistics and fraud prevention in Uganda and Nigeria. Both nations have embraced technology such as digital fraud prevention systems, biometric voter registration, and electronic results transmission while having different political environments and electoral problems. Nevertheless, these innovations' varied results raise important concerns about how technology can enhance vote integrity. For improved transparency and lower voter fraud, the Independent National Electoral Commission (INEC) of Nigeria has deployed electronic voting machines, biometric voter identification, and the INEC Result Viewing (IReV) portal. Despite these developments, technological setbacks and logistical difficulties, particularly during the 2023 elections, uncovered weaknesses that stoked distrust and electoral conflicts by exposing flaws, including device breakdowns, insufficient cybersecurity protections, and transmission delays in results. Comparably, Uganda has used electronic result transmission technologies and biometric voter verification since 2016 to increase election efficiency and combat ballot stuffing and impersonation. Nevertheless, problems, including remote logistical challenges and internet outages during the 2021 elections, have reduced the efficacy of these tools. This paper maintains that while technology might reduce election-related stress and potentially reduce fraud, its efficacy depends on several variables, such as political will, public confidence, and infrastructure. Furthermore, it draws attention to the necessity of more robust legislative frameworks, ongoing investments in cybersecurity, and implementation plans that are customized to the particular difficulties presented by each nation's voting system locally. The results imply that although technology can help Ugandan and Nigerian election management, it cannot guarantee electoral integrity and must be used in conjunction with more extensive institutional changes. Through providing insights into how African nations might use technological advancements to improve democratic governance while addressing context-specific problems, the research adds to the expanding body of literature on the use of technology in election management.Keywords: elections, Nigeria, Uganda, Africa, management, innovation
Procedia PDF Downloads 10252 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 251251 Economic Efficiency of Cassava Production in Nimba County, Liberia: An Output-Oriented Approach
Authors: Kollie B. Dogba, Willis Oluoch-Kosura, Chepchumba Chumo
Abstract:
In Liberia, many of the agricultural households cultivate cassava for either sustenance purposes, or to generate farm income. Many of the concentrated cassava farmers reside in Nimba, a north-eastern County that borders two other economies: the Republics of Cote D’Ivoire and Guinea. With a high demand for cassava output and products in emerging Asian markets coupled with an objective of the Liberia agriculture policies to increase the competitiveness of valued agriculture crops; there is a need to examine the level of resource-use efficiency for many agriculture crops. However, there is a scarcity of information on the efficiency of many agriculture crops, including cassava. Hence the study applying an output-oriented method seeks to assess the economic efficiency of cassava farmers in Nimba County, Liberia. A multi-stage sampling technique was employed to generate a sample for the study. From 216 cassava farmers, data related to on-farm attributes, socio-economic and institutional factors were collected. The stochastic frontier models, using the Translog functional forms, of production and revenue, were used to determine the level of revenue efficiency and its determinants. The result showed that most of the cassava farmers are male (60%). Many of the farmers are either married, engaged or living together with a spouse (83%), with a mean household size of nine persons. Farmland is prevalently obtained by inheritance (95%), average farm size is 1.34 hectares, and most cassava farmers did not access agriculture credits (76%) and extension services (91%). The mean cassava output per hectare is 1,506.02 kg, which estimates average revenue of L$23,551.16 (Liberian dollars). Empirical results showed that the revenue efficiency of cassava farmers varies from 0.1% to 73.5%; with the mean revenue efficiency of 12.9%. This indicates that on average, there is a vast potential of 87.1% to increase the economic efficiency of cassava farmers in Nimba by improving technical and allocative efficiencies. For the significant determinants of revenue efficiency, age and group membership had negative effects on revenue efficiency of cassava production; while farming experience, access to extension, formal education, and average wage rate have positive effects. The study recommends the setting-up and incentivizing of farmer field schools for cassava farmers to primarily share their farming experiences with others and to learn robust cultivation techniques of sustainable agriculture. Also, farm managers and farmers should consider a fix wage rate in labor contracts for all stages of cassava farming.Keywords: economic efficiency, frontier production and revenue functions, Nimba County, Liberia, output-oriented approach, revenue efficiency, sustainable agriculture
Procedia PDF Downloads 128250 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination
Authors: Gilberto Goracci, Fabio Curti
Abstract:
This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field
Procedia PDF Downloads 105249 The Relationship between Violence against Women and Levels of Self-Esteem in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study
Authors: A. Bentley, A. Prost, N. Daruwalla, D. Osrin
Abstract:
Background: This study aims to investigate the relationship between experiences of violence against women in the family, and levels of self-esteem in women residing in informal settlement (slum) areas of Mumbai, India. The authors hypothesise that violence against women in Indian households extends beyond that of intimate partner violence (IPV), to include other members of the family and that experiences of violence are associated with lower levels of self-esteem. Methods: Experiences of violence were assessed through a cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points, and the main perpetrator of each. Self-esteem was assessed using the Rosenberg self-esteem questionnaire. A global score for self-esteem was calculated and the relationship between violence in the past year and Rosenberg self-esteem score was assessed using multivariable linear regression models, adjusted for years of education completed, and clustering using robust standard errors. Results: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 6 years of education and had been married 9.5 years. 88% were Muslim and 46% lived in joint families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 24% physical, 12% sexual). Of the women who experienced violence after marriage, 70% cited a perpetrator other than the husband for at least one of the acts. 5% had low self-esteem (Rosenberg score < 15). For women who experienced emotional violence in the past year, the Rosenberg score was 2.6 points lower (p < 0.001). It was 1.2 points lower (p = 0.03) for women who experienced economic violence. For physical or sexual violence in the past year, no statistically significant relationship with Rosenberg score was seen. However, for a one-unit increase in the number of different acts of each type of violence experienced in the past year, a decrease in Rosenberg score was seen (-0.62 for emotional, -0.76 for economic, -0.53 for physical and -0.47 for sexual; p < 0.05 for all). Discussion: The high prevalence of violence experiences across the lifetime was likely due to the detailed assessment of violence and the inclusion of perpetrators within the family other than the husband. Experiences of emotional or economic violence in the past year were associated with lower Rosenberg scores and therefore lower self-esteem, but no relationship was seen between experiences of physical or sexual violence and Rosenberg score overall. For all types of violence in the past year, a greater number of different acts were associated with a decrease in Rosenberg score. Emotional violence showed the strongest relationship with self-esteem, but for all types of violence the more complex the pattern of perpetration with different methods used, the lower the levels of self-esteem. Due to the cross-sectional nature of the study causal directionality cannot be attributed. Further work to investigate the relationship between severity of violence and self-esteem and whether self-esteem mediates relationships between violence and poorer mental health would be beneficial.Keywords: family violence, India, informal settlements, Rosenberg self-esteem scale, self-esteem, violence against women
Procedia PDF Downloads 126248 The Impact of Migrants’ Remittances on Household Poverty and Income Inequality: A Case Study of Mazar-i-Sharif, Balkh Province, Afghanistan
Authors: Baqir Khawari
Abstract:
This study critically examines the influence of remittances on household poverty and income inequality in Mazar-i-Sharif, Balkh Province, Afghanistan, utilizing robust OLS and Logit models with a rigorous multi-random sampling method. The empirical findings reveal that a 1% increase in per capita international remittances is associated with a substantial 0.071% and 0.059% rise in per capita income during the fiscal years 2019/20 and 2020/21, respectively. Furthermore, this increase significantly mitigates the per capita depth of poverty by 0.0272% and 0.025% and the severity of poverty by 0.0149% and 0.0145% over the same periods. Notably, the impact of international remittances on poverty alleviation surpasses that of internal remittances. In addressing income inequality, the analysis demonstrates that remittances contribute to a reduction in the Gini coefficient by 2% in 2019/20 and 7% in 2020/21, underscoring their pivotal role in promoting equitable economic distribution. However, the COVID-19 pandemic has posed significant challenges, diminishing remittance flows and, consequently, their positive effects on household welfare. The logistic regression results further corroborate these findings, indicating that increased per capita remittances, both international and internal, markedly decrease the likelihood of households falling below the poverty line. Specifically, a 1% rise in per capita external remittances reduces this likelihood by 4.5% in 2019/20 and by 3.7% in 2020/21, while internal remittances decrease it by 3% and 2.4%, respectively. The study also explores the demographic determinants of poverty. Larger household sizes and older household heads correlate positively with poverty, whereas higher education levels among household heads and members, and a greater proportion of male members, correlate negatively with poverty incidence and severity. Female-headed households are disproportionately affected by poverty, exacerbated by socio-cultural restrictions. Despite these adversities, the data suggest that remittances are a crucial instrument for poverty alleviation and income inequality reduction in Afghanistan. The findings advocate for policy interventions aimed at enhancing formal remittance channels, promoting education, and empowering women. Effective governance and sustained international assistance are essential to harness the full potential of remittances in combating poverty and inequality. This study highlights the need for strategic, multifaceted approaches to foster sustainable economic development in Afghanistan’s challenging socio-political context.Keywords: migration, remittances, poverty, inequality, COVID-19, Afghanistan
Procedia PDF Downloads 36247 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy
Authors: Brock Liden, Eric Janowitz
Abstract:
Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring
Procedia PDF Downloads 77246 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 54