Search results for: poverty prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3034

Search results for: poverty prediction

1834 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model

Procedia PDF Downloads 318
1833 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 246
1832 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers

Authors: U. Chattaraj, K. Dhusiya, M. Raviteja

Abstract:

Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.

Keywords: driver, fuzzy logic, perception reaction time, premise variable

Procedia PDF Downloads 303
1831 Causes of Terrorism: Perceptions of University Students of Teacher Training Institutions

Authors: Saghir Ahmad, Abid Hussain Ch, Misbah Malik, Ayesha Batool

Abstract:

Terrorism is the marvel in which dreadful circumstance is made by a gathering of individuals who view themselves as abused by society. Terrorism is the unlawful utilization of power or viciousness by a man or a sorted out gathering by the general population or property with the aim of intimidation or compulsion of social orders or governments frequently for ideological or political reasons. Terrorism is as old as people. The main aim of the study was to find out the causes of terrorism through the perceptions of the universities students of teacher training institutions. This study was quantitative in nature. Survey method was used to collect data. A sample of two hundred and sixty seven students was selected from public universities. A five point Likert scale was used to collect data. Mean, Standard deviation, independent sample t-test, and One Way ANOVA were applied to analyze the data. The major findings of the study indicated that students perceived the main causes of terrorism are poverty, foreign interference, wrong concept of Islamization, and social injustice. It is also concluded that mostly, students think that drone attacks are promoting the terrorist activities. The education is key to eliminate the terrorism. There is need to educate the people and specially youngsters to bring the peace in the world.

Keywords: dreadful circumstance, governments, power, students, terrorism

Procedia PDF Downloads 547
1830 Crime against Women in India: A Geospatial Analysis

Authors: V. S. Binu, Amitha Puranik, Sintomon Mathew, Sebin Thomas

Abstract:

Globally, women are more vulnerable to various forms of crimes than males. The crimes that are directed specifically towards women are classified as crime against women. Crime against women in India is observed to increase year after year and according to the National Crime Records Bureau (NCRB) report, in 2014 there was an increase of 9.2% cases of crime against women compared to the previous year. The violence in a population depends on socio-demographic factors, unemployment, poverty, number of police officials etc. There are very few studies that explored to identify hotspots of various types of crime against women in India. Hotspots are geographical regions where the number of observed cases is more than the expected number for that region. It is important to identify the hotspots of crime against women in India in order to control and prevent violence against women in that region. The goal of this study is to identify the hotspots of crime against women in India using spatial data analysis techniques. For the present study, we used the district level data of various types of crime against women in India in the year 2011 published by NCRB and the 2011 Census population in each of these districts. The study used spatial scan statistic to identify the hotspots using SaTScan software.

Keywords: crime, hotspots, India, Satscan, Women

Procedia PDF Downloads 412
1829 Battling with Patriarchy: Political Sexuality and Gender Democracy in Nigeria

Authors: Lenshie, Nsemba Edward

Abstract:

This paper examines political sexuality as an identity construct, which imparts on democratic practices globally. The manifestation of political sexuality reflect on the dynamics of social, economic, cultural and political relations among different gender affecting a number of issues, such as the questions of citizenship, poverty alleviation, property rights, ownership and inheritance, rights to sexual consent, polygamous marriage, governance and representation among other issues. This paper is concerned with the aspect of political participation among different genders in Nigeria. This paper posit that political sexuality is an outcome of ‘sexuality differences’, which seeks to glorify and gratify the superiority of a particular sexuality over another. Political sexuality, therefore, motivate and exacerbate socio-cultural, economic, and political struggles among different sexualities. The paper asserts further that majority of women have been discriminated, sexually harassed, and are often denied certain rights and privileges in Nigeria. A few number of women who have found themselves at the corridors of government have used the Beijing protocol on Women to demand for ‘affirmative action’ to expand their political space. It contends that the ‘affirmative action’ in Nigeria is far from achieving it throughout the country. The paper conclude that women require more than just a ‘self-rediscovery’ to assertively demand for a more and proper inclusion in Nigeria’s democratic process.

Keywords: gender democracy, identity, politics, political sexuality

Procedia PDF Downloads 434
1828 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 117
1827 Small Businesses as Vehicles for Job Creation in North-West Nigeria

Authors: Mustapha Shitu Suleiman, Francis Neshamba, Nestor Valero-Silva

Abstract:

Small businesses are considered as engine of economic growth, contributing to employment generation, wealth creation, and poverty alleviation and food security in both developed and developing countries. Nigeria is facing many socio-economic problems and it is believed that by supporting small business development, as propellers of new ideas and more effective users of resources, often driven by individual creativity and innovation, Nigeria would be able to address some of its economic and social challenges, such as unemployment and economic diversification. Using secondary literature, this paper examines the role small businesses can play in the creation of jobs in North-West Nigeria to overcome issues of unemployment, which is the most devastating economic challenge facing the region. Most studies in this area have focused on Nigeria as a whole and only a few studies provide a regional focus, hence, this study will contribute to knowledge by filling this gap by concentrating on North-West Nigeria. It is hoped that with the present administration’s determination to improve the economy, small businesses would be used as vehicles for diversification of the economy away from crude oil to create jobs that would lead to a reduction in the country’s high unemployment level.

Keywords: job creation, north-west, Nigeria, small business, unemployment

Procedia PDF Downloads 305
1826 A Lesson in the Social Welfare System in Mexico: Limited Resources for Unlimited Needs

Authors: Vanessa L. Haro

Abstract:

Beginning with a historical foundation of Mexico, this marks the start of a close examination of this major Latin American country by providing the context needed to understand the reasons for Mexico’s strengths and struggles today, specific to their response to the issue of gender violence. Responding to the challenge of combating gender violence and inequality, Mexico has created social programs and initiatives in hopes of addressing these issues and modernizing their gender norms, which currently disempower and dehumanize women, while simultaneously denying women the necessary tools needed to fight back or bring balance to the gender scales. Nevertheless, women in Mexico have made their voices heard with the most salient image of that of the mothers protesting while holding the photos of their young daughters who lost their lives. This case study on gender issues in Mexico works to acknowledge the diverse forces that contribute to the issue of gender violence, and to make a statement that this is a crisis that requires a more dynamic response within Mexico’s social welfare policies, and should not be allowed to continue to progress as a normative phenomenon. As the advocacy groups and protesters cry out, “Ni una menos! (Not one less), meaning we will not lose one more woman and making the statement that all women’s lives matter.

Keywords: gender issues, Mexico, poverty, social welfare

Procedia PDF Downloads 263
1825 Prediction of the Heat Transfer Characteristics of Tunnel Concrete

Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park

Abstract:

This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.

Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire

Procedia PDF Downloads 434
1824 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 449
1823 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model

Authors: Toby Li, Julian Zhu

Abstract:

In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.

Keywords: Starlink, collision probability, debris, geometry model

Procedia PDF Downloads 80
1822 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear

Authors: F. Sabri, J. Jamali

Abstract:

In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.

Keywords: composite, FEM, membrane, wrinkling

Procedia PDF Downloads 274
1821 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 158
1820 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 215
1819 Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.

Keywords: fatigue, debonding, Paris law, APDL, adhesive

Procedia PDF Downloads 363
1818 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
1817 Settlement of Group of Stone Columns

Authors: Adel Hanna, Tahar Ayadat, Mohammad Etezad, Cyrille Cros

Abstract:

A number of theoretical methods have been developed over the years to calculate the amount settlement of the soil reinforced with group of stone columns. The results deduced from these methods sometimes show large disagreement with the experimental observations. The reason of this divergence might be due to the fact that many of the previous methods assumed the deform shape of the columns which is different with the actual case. A new method to calculate settlement of the ground reinforced with group of stone columns is presented in this paper which overcomes the restrictions made by previous theories. This method is based on results deduced from numerical modeling. Results obtained from the model are validated.

Keywords: stone columns, group, soft soil, settlement, prediction

Procedia PDF Downloads 503
1816 An Alteration of the Boltzmann Superposition Principle to Account for Environmental Degradation in Fiber Reinforced Plastics

Authors: Etienne K. Ngoy

Abstract:

This analysis suggests that the comprehensive degradation caused by any environmental factor on fiber reinforced plastics under mechanical stress can be measured as a change in viscoelastic properties of the material. The change in viscoelastic characteristics is experimentally determined as a time-dependent function expressing the amplification of the stress relaxation. The variation of this experimental function provides a measure of the environmental degradation rate. Where real service environment conditions can be reliably simulated in the laboratory, it is possible to generate master curves that include environmental degradation effect and hence predict the durability of the fiber reinforced plastics under environmental degradation.

Keywords: environmental effects, fiber reinforced plastics durability, prediction, stress effect

Procedia PDF Downloads 190
1815 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 130
1814 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 534
1813 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 131
1812 The Impact of Psychopathology Course on Students' Attitudes towards Mental Illness

Authors: Lorato Itumeleng Kenosi

Abstract:

Background: Negative attitudes towards the mentally ill are widespread and a course for concern as they have a detrimental impact on individuals affected by mental illness. A possible avenue for changing attitudes towards mental illness is through mental health literacy. In a college or university setting, an abnormal psychology course may be introduced in an attempt to change student’s attitudes towards the mentally ill. Objective: To determine if and how students’ attitudes towards the mentally ill change as a result of taking a course in abnormal psychology. Methods: Twenty nine (29) students were recruited from an abnormal psychology class at the University of Botswana. Attitude Scale for Mental Illness (ASMI) questionnaire was administered to participants at the beginning and end of the semester. SPSS was employed to analyze data. Pooled means were used to determine whether the student’s attitudes towards mental illness were negative or positive. A mean of 2.5 translated to negative attitude for both total attitude and attitudes in different domains of the scale. Paired sample t-test was then used to assess whether any changes noted in attitudes were statistically significant or not. Statistical significance was assumed at p < 0.05. Results: Students’ general attitude towards mental illness remained positive although the pooled mean value increased from 2.08 to 2.24. The change was not statistically significant. In relation to different sub scales, the values of the pooled means for all the sub scales showed an increase although the changes were not statistically significant except for the Stereotyping sub scale (p = 0.031). The stereotyping domain reflected a statistically significant change in student’s attitude from positive attitude to negative (X² = 2.06 to X² = 2.55). For the pessimistic prediction domain, students consistently showed a negative attitude (X² = 3.34 to X² = 3.55). The other 4 domains indicated that students had positive attitude toward mentally ill throughout. Discussion: Abnormal psychology students have a positive attitude towards the mentally ill generally. This could be attributed to the fact that all students in the abnormal psychology course are majoring in psychology and research has shown that interest in psychology can affect one’s attitude towards mental illness. The students continuously held the view that people with mental illness are unlikely to improve as evidenced by a high score for Pessimistic prediction domain for both pre and post-test. Students initially had no stereotyping attitude towards the mentally ill, but at the end of the course, they were of the opinion that people with mental illness can be defined in a certain behavioural pattern and mental ability. This results could be an indication that students have learnt well how to differentiate abnormal from normal behaviour not necessarily that students had developed a negative attitude. Conclusion: A course in abnormal psychology does have an impact on the students’ attitudes towards the mentally ill. The impact does not solely depend on knowledge of mental illness but also on several other factors such as contact with the mentally ill, interest in psychology, and teaching methods. However, it should be noted that sometimes improved knowledge in mental illness can be misunderstood for a negative attitude. For example, stereotyping attitudes may be a reflection of the ability to differentiate between abnormal and normal behaviour.

Keywords: attitudes, mental illness, psychopathology, students

Procedia PDF Downloads 283
1811 Job Resource, Personal Resource, Engagement and Performance with Balanced Score Card in the Integrated Textile Companies in Indonesia

Authors: Nurlaila Effendy

Abstract:

Companies in Asia face a number of constraints in tight competitiveness in ASEAN Economic Community 2015 and globalization. An economic capitalism system as an integral part of globalization processing brings broad impacts. They need to improve business performance in globalization and ASEAN Economic Community. Organizational development has quite clearly demonstrated that aligning individual’s personal goals with the goals of the organization translates into measurable and sustained performance improvement. Human capital is a key to achieve company performance. Employee Engagement (EE) creates and expresses themselves physically, cognitively and emotionally to achieve company goals and individual goals. One will experience a total involvement when they undertake their jobs and feel a self integration to their job and organization. A leader plays key role in attaining the goals and objectives of a company/organization. Any Manager in a company needs to have leadership competence and global mindset. As one the of positive organizational behavior developments, psychological capital (PsyCap) is assumed to be one of the most important capitals in the global mindset, in addition to intellectual capital and social capital. Textile companies also need to face a number of constraints in tight competitiveness in regional and global. This research involved 42 managers in two textiles and a spinning companies in a group, in Central Java, Indonesia. It is a quantitative research with Partial Least Squares (PLS) studying job resource (Social Support & Organizational Climate) and Personal Resource (4 dimensions of Psychological Capital & Leadership Competence) as prediction of Employee Engagement, also Employee Engagement and leadership competence as prediction of leader’s performance. The performance of a leader is measured by means of achievement on objective strategies in terms of 4 perspectives (financial and non-financial perspectives) in a Balanced Score Card (BSC). It took one year during a business plan of year 2014, from January to December 2014. The result of this research is there is correlation between Job Resource (coefficient value of Social Support is 0.036 & coefficient value of organizational climate is 0.220) and Personal Resource (coefficient value of PsyCap is 0.513 & coefficient value of Leadership Competence is 0.249) with employee engagement. There is correlation between employee engagement (coefficient value is 0.279) and leadership competence (coefficient value is 0.581) with performance.

Keywords: organizational climate, social support, psychological capital leadership competence, employee engagement, performance, integrated textile companies

Procedia PDF Downloads 431
1810 Unveiling the Realities of Marrying Too Young: Evidence from Child Brides in Sub-Saharan Africa and Infant Mortality Implications

Authors: Emmanuel Olamijuwon

Abstract:

Despite laws against child marriage - a violation against child rights, the practice remains widespread in sub-Saharan Africa and globally partly because of persistent poverty, gender inequality, protection and the need to reinforce family ties. Using pooled data from the recent demographic and health surveys of 20-sub-Saharan African countries with a regional representative sample of 36,943 girls under 18 years, this study explores the prevalence, pattern and infant mortality implications of this marriage type while also examining its regional variations. Indications from the study are that child marriage is still very high in the region with variations above one-tenth in West, Central and Southern Africa regions except in the East African region where only about 7% of children under 18 were already married. Preliminary findings also suggest that about one-in-ten infant deaths were to child brides many of whom were residing in poor households, rural residence, unemployed and have less than secondary education. Based on these findings, it is, therefore, important that government of African countries addresses critical issues through increased policies towards increasing enrollment of girl children in schools as many of these girls are not likely to have any economic benefit to the region if the observed pattern continues.

Keywords: child marriage, infant mortality, Africa, child brides

Procedia PDF Downloads 252
1809 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 352
1808 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 407
1807 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 143
1806 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 438
1805 Examining the Drivers to Sustainable Consumer Behavioral Intention in the Irish Aviation Industry

Authors: Amy Whelan

Abstract:

This paper presents a comprehensive study on the drivers of sustainable consumer behavior in the Irish aviation industry. It aims to understand the underlying factors that facilitate or hinder a consumer's sustainable consumption habits related to aviation and its impact on the achievement of the United Nations' Sustainable Development Goals (SDGs). Adopted by all UN member states in 2015, the SDGs represent a global call to action to end poverty, protect the planet, and ensure peace and prosperity for all by 2030. The research takes a mixed methodology approach, combining focus groups in phase 1 and a survey in phase 2. The focus groups will be used to elicit qualitative data to understand the attitudes and perceptions of consumers toward sustainable aviation and tourism in Ireland. The survey in phase 2 will then provide a more comprehensive and quantifiable understanding of the topic. The results of this study will contribute to the advancement of knowledge in the field of sustainable tourism and will provide insights into the drivers of sustainable consumer behavior in the Irish aviation industry. It is expected that the findings of this research will have practical implications for industry stakeholders and policy-makers in their efforts to promote sustainable tourism and achieve the SDGs in Ireland.

Keywords: aviation, consumer behaviour, marketing, sustainability

Procedia PDF Downloads 78